NRbones commited on
Commit
089513f
·
verified ·
1 Parent(s): 492b06b

Upload 1614 files

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. Han/.gitattributes +35 -0
  2. Han/README.md +13 -0
  3. Han/app.py +113 -0
  4. Han/data/__pycache__/dataset.cpython-36.pyc +0 -0
  5. Han/data/__pycache__/dataset.cpython-37.pyc +0 -0
  6. Han/data/__pycache__/dataset.cpython-38.pyc +0 -0
  7. Han/data/__pycache__/dataset.cpython-39.pyc +0 -0
  8. Han/data/create_data.py +18 -0
  9. Han/data/dataset.py +247 -0
  10. Han/data/prepare_data.py +458 -0
  11. Han/files/.DS_Store +0 -0
  12. Han/files/english_words.txt +0 -0
  13. Han/files/example_data/style-1/im_0.png +0 -0
  14. Han/files/example_data/style-1/im_1.png +0 -0
  15. Han/files/example_data/style-1/im_10.png +0 -0
  16. Han/files/example_data/style-1/im_11.png +0 -0
  17. Han/files/example_data/style-1/im_12.png +0 -0
  18. Han/files/example_data/style-1/im_13.png +0 -0
  19. Han/files/example_data/style-1/im_14.png +0 -0
  20. Han/files/example_data/style-1/im_2.png +0 -0
  21. Han/files/example_data/style-1/im_3.png +0 -0
  22. Han/files/example_data/style-1/im_4.png +0 -0
  23. Han/files/example_data/style-1/im_5.png +0 -0
  24. Han/files/example_data/style-1/im_6.png +0 -0
  25. Han/files/example_data/style-1/im_7.png +0 -0
  26. Han/files/example_data/style-1/im_8.png +0 -0
  27. Han/files/example_data/style-1/im_9.png +0 -0
  28. Han/files/example_data/style-10/im_0.png +0 -0
  29. Han/files/example_data/style-10/im_1.png +0 -0
  30. Han/files/example_data/style-10/im_10.png +0 -0
  31. Han/files/example_data/style-10/im_11.png +0 -0
  32. Han/files/example_data/style-10/im_12.png +0 -0
  33. Han/files/example_data/style-10/im_13.png +0 -0
  34. Han/files/example_data/style-10/im_14.png +0 -0
  35. Han/files/example_data/style-10/im_2.png +0 -0
  36. Han/files/example_data/style-10/im_3.png +0 -0
  37. Han/files/example_data/style-10/im_4.png +0 -0
  38. Han/files/example_data/style-10/im_5.png +0 -0
  39. Han/files/example_data/style-10/im_6.png +0 -0
  40. Han/files/example_data/style-10/im_7.png +0 -0
  41. Han/files/example_data/style-10/im_8.png +0 -0
  42. Han/files/example_data/style-10/im_9.png +0 -0
  43. Han/files/example_data/style-102/im_0.png +0 -0
  44. Han/files/example_data/style-102/im_1.png +0 -0
  45. Han/files/example_data/style-102/im_10.png +0 -0
  46. Han/files/example_data/style-102/im_11.png +0 -0
  47. Han/files/example_data/style-102/im_12.png +0 -0
  48. Han/files/example_data/style-102/im_13.png +0 -0
  49. Han/files/example_data/style-102/im_14.png +0 -0
  50. Han/files/example_data/style-102/im_2.png +0 -0
Han/.gitattributes ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
Han/README.md ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: HWT
3
+ emoji: 👁
4
+ colorFrom: gray
5
+ colorTo: pink
6
+ sdk: gradio
7
+ sdk_version: 4.19.1
8
+ app_file: app.py
9
+ pinned: false
10
+ license: mit
11
+ ---
12
+
13
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
Han/app.py ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from PIL import Image
3
+ import numpy as np
4
+ from io import BytesIO
5
+ import glob
6
+ import os
7
+ import time
8
+ from data.dataset import load_itw_samples, crop_
9
+ import torch
10
+ import cv2
11
+ import os
12
+ import numpy as np
13
+ from models.model import TRGAN
14
+ from params import *
15
+ from torch import nn
16
+ from data.dataset import get_transform
17
+ import pickle
18
+ from PIL import Image
19
+ import tqdm
20
+ import shutil
21
+ from datetime import datetime
22
+
23
+
24
+ wellcomingMessage = """
25
+ <h1>💥 Handwriting Synthesis - Generate text in anyone's handwriting 💥 </h1>
26
+ <p>🚀 This app is a demo for the ICCV'21 paper "Handwriting Transformer". Visit our github paper for more information - <a href="https://github.com/ankanbhunia/Handwriting-Transformers" target="_blank">https://github.com/ankanbhunia/Handwriting-Transformers</a></p>
27
+ <p>🚀 You can either choose from an existing style gallery or upload your own handwriting. If you choose to upload, please ensure that you provide a sufficient number of (~15) cropped handwritten word images for the model to work effectively. The demo is made available for research purposes, and any other use is not intended.</p>
28
+ <p>🚀 Some examples of cropped handwritten word images can be found <a href="https://huggingface.co/spaces/ankankbhunia/HWT/tree/main/files/example_data/style-1" target="_blank">here</a>.
29
+ """
30
+
31
+ model_path = 'files/iam_model.pth'
32
+
33
+
34
+ batch_size = 1
35
+ print ('(1) Loading model...')
36
+ model = TRGAN(batch_size = batch_size)
37
+ model.netG.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')) )
38
+ print (model_path+' : Model loaded Successfully')
39
+ model.eval()
40
+
41
+ # Define a function to generate an image based on text and images
42
+ def generate_image(text,folder, _ch3, images):
43
+ # Your image generation logic goes here (replace with your actual implementation)
44
+ # For demonstration purposes, we'll just concatenate the uploaded images horizontally.
45
+ try:
46
+ text_copy = text
47
+ if images:
48
+ style_log = images
49
+ style_inputs, width_length = load_itw_samples(images)
50
+ elif folder:
51
+ style_log = folder
52
+ style_inputs, width_length = load_itw_samples(folder)
53
+ else:
54
+ return None
55
+ # Load images
56
+ text = text.replace("\n", "").replace("\t", "")
57
+ text_encode = [j.encode() for j in text.split(' ')]
58
+ eval_text_encode, eval_len_text = model.netconverter.encode(text_encode)
59
+ eval_text_encode = eval_text_encode.to(DEVICE).repeat(batch_size, 1, 1)
60
+
61
+ input_styles, page_val = model._generate_page(style_inputs.to(DEVICE).clone(), width_length, eval_text_encode, eval_len_text, no_concat = True)
62
+ page_val = crop_(page_val[0]*255)
63
+ input_styles = crop_(input_styles[0]*255)
64
+
65
+ max_width = max(page_val.shape[1],input_styles.shape[1])
66
+
67
+ if page_val.shape[1]!=max_width:
68
+ page_val = np.concatenate([page_val, np.ones((page_val.shape[0],max_width-page_val.shape[1]))*255], 1)
69
+ else:
70
+ input_styles = np.concatenate([input_styles, np.ones((input_styles.shape[0],max_width-input_styles.shape[1]))*255], 1)
71
+
72
+ upper_pad = np.ones((45,input_styles.shape[1]))*255
73
+ input_styles = np.concatenate([upper_pad, input_styles], 0)
74
+ page_val = np.concatenate([upper_pad, page_val], 0)
75
+
76
+ page_val = Image.fromarray(page_val).convert('RGB')
77
+ input_styles = Image.fromarray(input_styles).convert('RGB')
78
+
79
+ current_datetime = datetime.now()
80
+ formatted_datetime = current_datetime.strftime("%Y-%m-%d %H:%M:%S")
81
+
82
+ print (f'{formatted_datetime}: input_string - {text_copy}, style_input - {style_log}\n')
83
+
84
+ return input_styles, page_val
85
+
86
+ except:
87
+ print ('ERROR! Try again.')
88
+ return None, None
89
+
90
+
91
+ input_text_string = "In the quiet hum of everyday life, the dance of existence unfolds. Time, an ever-flowing river, carries the stories of triumph and heartache. Each fleeting moment is a brushstroke on the canvas of our memories."
92
+ # Define Gradio Interface
93
+ iface = gr.Interface(
94
+ fn=generate_image,
95
+ inputs=[
96
+ gr.Textbox(value = input_text_string, label = "Input text"),
97
+ gr.Dropdown(value = "files/example_data/style-30", choices=glob.glob('files/example_data/*'), label="Choose from provided writer styles"),
98
+ gr.Markdown("### OR"),
99
+ gr.File(label="Upload multiple word images", file_count="multiple")
100
+ ],
101
+ outputs=[#gr.Markdown("## Output"),
102
+ gr.Image(type="pil", label="Style Image"),
103
+ gr.Image(type="pil", label="Generated Image")],
104
+ description = wellcomingMessage,
105
+ thumbnail = "Handwriting Synthesis - Mimic anyone's handwriting!",
106
+ # examples = [["The sun dipped below the horizon, painting the sky in hues of orange and pink. A gentle breeze rustled the leaves, whispering secrets to the ancient trees. In that fleeting moment, nature's beauty spoke louder than words ever could.", 'files/example_data/style-30', None, None],
107
+ # ["Lorem ipsum dolor sit amet, consectetur adipiscing elit. Vestibulum eget lectus eu ex iaculis tristique. Nullam vestibulum, odio vel tincidunt aliquet, sapien quam efficitur risus, nec hendrerit justo quam eget elit. Sed vel augue a lacus facilisis venenatis. ", 'files/example_data/style-31', None, None],
108
+ # ["The sun dipped below the horizon, painting the sky in hues of orange and pink. A gentle breeze rustled the leaves, whispering secrets to the ancient trees. In that fleeting moment, nature's beauty spoke louder than words ever could.", None, None, glob.glob('files/example_data/style-1/*')],
109
+ # ["Lorem ipsum dolor sit amet, consectetur adipiscing elit. Vestibulum eget lectus eu ex iaculis tristique. Nullam vestibulum, odio vel tincidunt aliquet, sapien quam efficitur risus, nec hendrerit justo quam eget elit. Sed vel augue a lacus facilisis venenatis. ", None, None, glob.glob('files/example_data/style-2/*')]]
110
+ )
111
+
112
+ # Launch the Gradio Interface
113
+ iface.launch(debug=True, share=True)
Han/data/__pycache__/dataset.cpython-36.pyc ADDED
Binary file (6.37 kB). View file
 
Han/data/__pycache__/dataset.cpython-37.pyc ADDED
Binary file (6.39 kB). View file
 
Han/data/__pycache__/dataset.cpython-38.pyc ADDED
Binary file (7.77 kB). View file
 
Han/data/__pycache__/dataset.cpython-39.pyc ADDED
Binary file (5.96 kB). View file
 
Han/data/create_data.py ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import random
2
+ import torch
3
+ from torch.utils.data import Dataset
4
+ from torch.utils.data import sampler
5
+ import lmdb
6
+ import torchvision.transforms as transforms
7
+ import six
8
+ import sys
9
+ from PIL import Image
10
+ import numpy as np
11
+ import os
12
+ import sys
13
+ import pickle
14
+ import numpy as np
15
+
16
+ import glob
17
+
18
+ glob.glob('/nfs/users/ext_ankan.bhunia/Handwritten_data/CVL/cvl-database-1-1/*/words/*/*tif')
Han/data/dataset.py ADDED
@@ -0,0 +1,247 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
2
+ # SPDX-License-Identifier: MIT
3
+
4
+ import random
5
+ import torch
6
+ from torch.utils.data import Dataset
7
+ from torch.utils.data import sampler
8
+ #import lmdb
9
+ import torchvision.transforms as transforms
10
+ import six
11
+ import sys
12
+ from PIL import Image
13
+ import numpy as np
14
+ import os
15
+ import sys
16
+ import pickle
17
+ import numpy as np
18
+ from params import *
19
+ import glob, cv2
20
+ import torchvision.transforms as transforms
21
+
22
+ def crop_(input):
23
+ image = Image.fromarray(input)
24
+ image = image.convert('L')
25
+ binary_image = image.point(lambda x: 0 if x > 127 else 255, '1')
26
+ bbox = binary_image.getbbox()
27
+ cropped_image = image.crop(bbox)
28
+ return np.array(cropped_image)
29
+
30
+ def get_transform(grayscale=False, convert=True):
31
+
32
+ transform_list = []
33
+ if grayscale:
34
+ transform_list.append(transforms.Grayscale(1))
35
+
36
+ if convert:
37
+ transform_list += [transforms.ToTensor()]
38
+ if grayscale:
39
+ transform_list += [transforms.Normalize((0.5,), (0.5,))]
40
+ else:
41
+ transform_list += [transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]
42
+
43
+ return transforms.Compose(transform_list)
44
+
45
+ def load_itw_samples(folder_path, num_samples = 15):
46
+ if isinstance(folder_path, str):
47
+ paths = glob.glob(f'{folder_path}/*')
48
+ else:
49
+ paths = folder_path
50
+ paths = np.random.choice(paths, num_samples, replace = len(paths)<=num_samples)
51
+
52
+ words = [os.path.basename(path_i)[:-4] for path_i in paths]
53
+
54
+ imgs = [np.array(Image.open(i).convert('L')) for i in paths]
55
+
56
+ imgs = [crop_(im) for im in imgs]
57
+ imgs = [cv2.resize(imgs_i, (int(32*(imgs_i.shape[1]/imgs_i.shape[0])), 32)) for imgs_i in imgs]
58
+ max_width = 192
59
+
60
+ imgs_pad = []
61
+ imgs_wids = []
62
+
63
+ trans_fn = get_transform(grayscale=True)
64
+
65
+ for img in imgs:
66
+
67
+ img = 255 - img
68
+ img_height, img_width = img.shape[0], img.shape[1]
69
+ outImg = np.zeros(( img_height, max_width), dtype='float32')
70
+ outImg[:, :img_width] = img[:, :max_width]
71
+
72
+ img = 255 - outImg
73
+
74
+ imgs_pad.append(trans_fn((Image.fromarray(img))))
75
+ imgs_wids.append(img_width)
76
+
77
+ imgs_pad = torch.cat(imgs_pad, 0)
78
+
79
+ return imgs_pad.unsqueeze(0), torch.Tensor(imgs_wids).unsqueeze(0)
80
+
81
+
82
+ class TextDataset():
83
+
84
+ def __init__(self, base_path = DATASET_PATHS, num_examples = 15, target_transform=None):
85
+
86
+ self.NUM_EXAMPLES = num_examples
87
+
88
+ #base_path = DATASET_PATHS
89
+ file_to_store = open(base_path, "rb")
90
+ self.IMG_DATA = pickle.load(file_to_store)['train']
91
+ self.IMG_DATA = dict(list( self.IMG_DATA.items())) #[:NUM_WRITERS])
92
+ if 'None' in self.IMG_DATA.keys():
93
+ del self.IMG_DATA['None']
94
+ self.author_id = list(self.IMG_DATA.keys())
95
+
96
+ self.transform = get_transform(grayscale=True)
97
+ self.target_transform = target_transform
98
+
99
+ self.collate_fn = TextCollator()
100
+
101
+
102
+ def __len__(self):
103
+ return len(self.author_id)
104
+
105
+ def __getitem__(self, index):
106
+
107
+
108
+
109
+ NUM_SAMPLES = self.NUM_EXAMPLES
110
+
111
+
112
+ author_id = self.author_id[index]
113
+
114
+ self.IMG_DATA_AUTHOR = self.IMG_DATA[author_id]
115
+ random_idxs = np.random.choice(len(self.IMG_DATA_AUTHOR), NUM_SAMPLES, replace = True)
116
+
117
+ rand_id_real = np.random.choice(len(self.IMG_DATA_AUTHOR))
118
+ real_img = self.transform(self.IMG_DATA_AUTHOR[rand_id_real]['img'].convert('L'))
119
+ real_labels = self.IMG_DATA_AUTHOR[rand_id_real]['label'].encode()
120
+
121
+ imgs = [np.array(self.IMG_DATA_AUTHOR[idx]['img'].convert('L')) for idx in random_idxs]
122
+ labels = [self.IMG_DATA_AUTHOR[idx]['label'].encode() for idx in random_idxs]
123
+
124
+ max_width = 192 #[img.shape[1] for img in imgs]
125
+
126
+ imgs_pad = []
127
+ imgs_wids = []
128
+
129
+ for img in imgs:
130
+
131
+ img = 255 - img
132
+ img_height, img_width = img.shape[0], img.shape[1]
133
+ outImg = np.zeros(( img_height, max_width), dtype='float32')
134
+ outImg[:, :img_width] = img[:, :max_width]
135
+
136
+ img = 255 - outImg
137
+
138
+ imgs_pad.append(self.transform((Image.fromarray(img))))
139
+ imgs_wids.append(img_width)
140
+
141
+ imgs_pad = torch.cat(imgs_pad, 0)
142
+
143
+
144
+ item = {'simg': imgs_pad, 'swids':imgs_wids, 'img' : real_img, 'label':real_labels,'img_path':'img_path', 'idx':'indexes', 'wcl':index}
145
+
146
+
147
+
148
+ return item
149
+
150
+
151
+
152
+
153
+ class TextDatasetval():
154
+
155
+ def __init__(self, base_path = DATASET_PATHS, num_examples = 15, target_transform=None):
156
+
157
+ self.NUM_EXAMPLES = num_examples
158
+ #base_path = DATASET_PATHS
159
+ file_to_store = open(base_path, "rb")
160
+ self.IMG_DATA = pickle.load(file_to_store)['test']
161
+ self.IMG_DATA = dict(list( self.IMG_DATA.items()))#[NUM_WRITERS:])
162
+ if 'None' in self.IMG_DATA.keys():
163
+ del self.IMG_DATA['None']
164
+ self.author_id = list(self.IMG_DATA.keys())
165
+
166
+ self.transform = get_transform(grayscale=True)
167
+ self.target_transform = target_transform
168
+
169
+ self.collate_fn = TextCollator()
170
+
171
+
172
+ def __len__(self):
173
+ return len(self.author_id)
174
+
175
+ def __getitem__(self, index):
176
+
177
+ NUM_SAMPLES = self.NUM_EXAMPLES
178
+
179
+ author_id = self.author_id[index]
180
+
181
+ self.IMG_DATA_AUTHOR = self.IMG_DATA[author_id]
182
+ random_idxs = np.random.choice(len(self.IMG_DATA_AUTHOR), NUM_SAMPLES, replace = True)
183
+
184
+ rand_id_real = np.random.choice(len(self.IMG_DATA_AUTHOR))
185
+ real_img = self.transform(self.IMG_DATA_AUTHOR[rand_id_real]['img'].convert('L'))
186
+ real_labels = self.IMG_DATA_AUTHOR[rand_id_real]['label'].encode()
187
+
188
+
189
+ imgs = [np.array(self.IMG_DATA_AUTHOR[idx]['img'].convert('L')) for idx in random_idxs]
190
+ labels = [self.IMG_DATA_AUTHOR[idx]['label'].encode() for idx in random_idxs]
191
+
192
+ max_width = 192 #[img.shape[1] for img in imgs]
193
+
194
+ imgs_pad = []
195
+ imgs_wids = []
196
+
197
+ for img in imgs:
198
+
199
+ img = 255 - img
200
+ img_height, img_width = img.shape[0], img.shape[1]
201
+ outImg = np.zeros(( img_height, max_width), dtype='float32')
202
+ outImg[:, :img_width] = img[:, :max_width]
203
+
204
+ img = 255 - outImg
205
+
206
+ imgs_pad.append(self.transform((Image.fromarray(img))))
207
+ imgs_wids.append(img_width)
208
+
209
+ imgs_pad = torch.cat(imgs_pad, 0)
210
+
211
+
212
+ item = {'simg': imgs_pad, 'swids':imgs_wids, 'img' : real_img, 'label':real_labels,'img_path':'img_path', 'idx':'indexes', 'wcl':index}
213
+
214
+
215
+
216
+ return item
217
+
218
+
219
+
220
+
221
+ class TextCollator(object):
222
+ def __init__(self):
223
+ self.resolution = resolution
224
+
225
+ def __call__(self, batch):
226
+
227
+ img_path = [item['img_path'] for item in batch]
228
+ width = [item['img'].shape[2] for item in batch]
229
+ indexes = [item['idx'] for item in batch]
230
+ simgs = torch.stack([item['simg'] for item in batch], 0)
231
+ wcls = torch.Tensor([item['wcl'] for item in batch])
232
+ swids = torch.Tensor([item['swids'] for item in batch])
233
+ imgs = torch.ones([len(batch), batch[0]['img'].shape[0], batch[0]['img'].shape[1], max(width)], dtype=torch.float32)
234
+ for idx, item in enumerate(batch):
235
+ try:
236
+ imgs[idx, :, :, 0:item['img'].shape[2]] = item['img']
237
+ except:
238
+ print(imgs.shape)
239
+ item = {'img': imgs, 'img_path':img_path, 'idx':indexes, 'simg': simgs, 'swids': swids, 'wcl':wcls}
240
+ if 'label' in batch[0].keys():
241
+ labels = [item['label'] for item in batch]
242
+ item['label'] = labels
243
+ if 'z' in batch[0].keys():
244
+ z = torch.stack([item['z'] for item in batch])
245
+ item['z'] = z
246
+ return item
247
+
Han/data/prepare_data.py ADDED
@@ -0,0 +1,458 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+
3
+ # Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
4
+ # SPDX-License-Identifier: MIT
5
+
6
+ import os
7
+ import lmdb, tqdm
8
+ import cv2
9
+ import numpy as np
10
+ import argparse
11
+ import shutil
12
+ import sys
13
+ from PIL import Image
14
+ import random
15
+ import io
16
+ import xmltodict
17
+ import html
18
+ from sklearn.decomposition import PCA
19
+ import math
20
+ from tqdm import tqdm
21
+ from itertools import compress
22
+ import glob
23
+ def checkImageIsValid(imageBin):
24
+ if imageBin is None:
25
+ return False
26
+ imageBuf = np.fromstring(imageBin, dtype=np.uint8)
27
+ img = cv2.imdecode(imageBuf, cv2.IMREAD_GRAYSCALE)
28
+ imgH, imgW = img.shape[0], img.shape[1]
29
+ if imgH * imgW == 0:
30
+ return False
31
+ return True
32
+
33
+
34
+ def writeCache(env, cache):
35
+ with env.begin(write=True) as txn:
36
+ for k, v in cache.items():
37
+ if type(k) == str:
38
+ k = k.encode()
39
+ if type(v) == str:
40
+ v = v.encode()
41
+ txn.put(k, v)
42
+
43
+
44
+ def find_rot_angle(idx_letters):
45
+ idx_letters = np.array(idx_letters).transpose()
46
+ pca = PCA(n_components=2)
47
+ pca.fit(idx_letters)
48
+ comp = pca.components_
49
+ angle = math.atan(comp[0][0]/comp[0][1])
50
+ return math.degrees(angle)
51
+
52
+ def read_data_from_folder(folder_path):
53
+ image_path_list = []
54
+ label_list = []
55
+ pics = os.listdir(folder_path)
56
+ pics.sort(key=lambda i: len(i))
57
+ for pic in pics:
58
+ image_path_list.append(folder_path + '/' + pic)
59
+ label_list.append(pic.split('_')[0])
60
+ return image_path_list, label_list
61
+
62
+
63
+ def read_data_from_file(file_path):
64
+ image_path_list = []
65
+ label_list = []
66
+ f = open(file_path)
67
+ while True:
68
+ line1 = f.readline()
69
+ line2 = f.readline()
70
+ if not line1 or not line2:
71
+ break
72
+ line1 = line1.replace('\r', '').replace('\n', '')
73
+ line2 = line2.replace('\r', '').replace('\n', '')
74
+ image_path_list.append(line1)
75
+ label_list.append(line2)
76
+
77
+ return image_path_list, label_list
78
+
79
+
80
+ def show_demo(demo_number, image_path_list, label_list):
81
+ print('\nShow some demo to prevent creating wrong lmdb data')
82
+ print('The first line is the path to image and the second line is the image label')
83
+ for i in range(demo_number):
84
+ print('image: %s\nlabel: %s\n' % (image_path_list[i], label_list[i]))
85
+
86
+ def create_img_label_list(top_dir,dataset, mode, words, author_number, remove_punc):
87
+ root_dir = os.path.join(top_dir, dataset)
88
+ output_dir = root_dir + (dataset=='IAM')*('/words'*words + '/lines'*(not words))
89
+ image_path_list, label_list = [], []
90
+ author_id = 'None'
91
+ mode = 'all'
92
+ if dataset=='CVL':
93
+ root_dir = os.path.join(root_dir, 'cvl-database-1-1')
94
+ if words:
95
+ images_name = 'words'
96
+ else:
97
+ images_name = 'lines'
98
+ if mode == 'tr' or mode == 'val':
99
+ mode_dir = ['trainset']
100
+ elif mode == 'te':
101
+ mode_dir = ['testset']
102
+ elif mode == 'all':
103
+ mode_dir = ['testset', 'trainset']
104
+ idx = 1
105
+ for mod in mode_dir:
106
+ images_dir = os.path.join(root_dir, mod, images_name)
107
+ for path, subdirs, files in os.walk(images_dir):
108
+ for name in files:
109
+ if (mode == 'tr' and idx >= 10000) or (
110
+ mode == 'val' and idx < 10000) or mode == 'te' or mode == 'all' or mode == 'tr_3te':
111
+ if os.path.splitext(name)[0].split('-')[1] == '6':
112
+ continue
113
+ label = os.path.splitext(name)[0].split('-')[-1]
114
+
115
+ imagePath = os.path.join(path, name)
116
+ label_list.append(label)
117
+ image_path_list.append(imagePath)
118
+ idx += 1
119
+
120
+
121
+
122
+ elif dataset=='IAM':
123
+ labels_name = 'original'
124
+ if mode=='all':
125
+ mode = ['te', 'va1', 'va2', 'tr']
126
+ elif mode=='valtest':
127
+ mode=['te', 'va1', 'va2']
128
+ else:
129
+ mode = [mode]
130
+ if words:
131
+ images_name = 'wordImages'
132
+ else:
133
+ images_name = 'lineImages'
134
+ images_dir = os.path.join(root_dir, images_name)
135
+ labels_dir = os.path.join(root_dir, labels_name)
136
+ full_ann_files = []
137
+ im_dirs = []
138
+ line_ann_dirs = []
139
+ image_path_list, label_list = [], []
140
+ for mod in mode:
141
+ part_file = os.path.join(root_dir, 'original_partition', mod + '.lst')
142
+ with open(part_file)as fp:
143
+ for line in fp:
144
+ name = line.split('-')
145
+ if int(name[-1][:-1]) == 0:
146
+ anno_file = os.path.join(labels_dir, '-'.join(name[:2]) + '.xml')
147
+ full_ann_files.append(anno_file)
148
+ im_dir = os.path.join(images_dir, name[0], '-'.join(name[:2]))
149
+ im_dirs.append(im_dir)
150
+
151
+ if author_number >= 0:
152
+ full_ann_files = [full_ann_files[author_number]]
153
+ im_dirs = [im_dirs[author_number]]
154
+ author_id = im_dirs[0].split('/')[-1]
155
+
156
+ lables_to_skip = ['.', '', ',', '"', "'", '(', ')', ':', ';', '!']
157
+ for i, anno_file in enumerate(full_ann_files):
158
+ with open(anno_file) as f:
159
+ try:
160
+ line = f.read()
161
+ annotation_content = xmltodict.parse(line)
162
+ lines = annotation_content['form']['handwritten-part']['line']
163
+ if words:
164
+ lines_list = []
165
+ for j in range(len(lines)):
166
+ lines_list.extend(lines[j]['word'])
167
+ lines = lines_list
168
+ except:
169
+ print('line is not decodable')
170
+ for line in lines:
171
+ try:
172
+ label = html.unescape(line['@text'])
173
+ except:
174
+ continue
175
+ if remove_punc and label in lables_to_skip:
176
+ continue
177
+ id = line['@id']
178
+ imagePath = os.path.join(im_dirs[i], id + '.png')
179
+ image_path_list.append(imagePath)
180
+ label_list.append(label)
181
+
182
+ elif dataset=='RIMES':
183
+ if mode=='tr':
184
+ images_dir = os.path.join(root_dir, 'orig','training_WR')
185
+ gt_file = os.path.join(root_dir, 'orig',
186
+ 'groundtruth_training_icdar2011.txt')
187
+ elif mode=='te':
188
+ images_dir = os.path.join(root_dir, 'orig', 'testdataset_ICDAR')
189
+ gt_file = os.path.join(root_dir, 'orig',
190
+ 'ground_truth_test_icdar2011.txt')
191
+ elif mode=='val':
192
+ images_dir = os.path.join(root_dir, 'orig', 'valdataset_ICDAR')
193
+ gt_file = os.path.join(root_dir, 'orig',
194
+ 'ground_truth_validation_icdar2011.txt')
195
+ with open(gt_file, 'r') as f:
196
+ lines = f.readlines()
197
+ image_path_list = [os.path.join(images_dir, line.split(' ')[0]) for line in lines if len(line.split(' ')) > 1]
198
+
199
+ label_list = [line.split(' ')[1][:-1] for line in lines if len(line.split(' ')) > 1]
200
+
201
+ return image_path_list, label_list, output_dir, author_id
202
+
203
+ def createDataset(IMG_DATA, image_path_list, label_list, outputPath, mode, author_id, remove_punc, resize, imgH, init_gap, h_gap, charminW, charmaxW, discard_wide, discard_narr, labeled):
204
+ assert (len(image_path_list) == len(label_list))
205
+ nSamples = len(image_path_list)
206
+
207
+ outputPath = outputPath + (resize=='charResize') * ('/h%schar%sto%s/'%(imgH, charminW, charmaxW)) + (resize=='keepRatio') * ('/h%s/'%(imgH)) \
208
+ + (resize=='noResize') * ('/noResize/') + (author_id!='None') * ('single_authors/'+author_id+'/' ) \
209
+ + mode + (resize!='noResize') * (('_initGap%s'%(init_gap)) * (init_gap>0) + ('_hGap%s'%(h_gap)) * (h_gap>0) \
210
+ + '_NoDiscard_wide' * (not discard_wide) + '_NoDiscard_wide' * (not discard_narr))+'_unlabeld' * (not labeled) +\
211
+ (('IAM' in outputPath) and remove_punc) *'_removePunc'
212
+
213
+ outputPath_ = '/root/Handwritten_data/IAM/authors' + (resize=='charResize') * ('/h%schar%sto%s/'%(imgH, charminW, charmaxW)) + (resize=='keepRatio') * ('/h%s/'%(imgH)) \
214
+ + (resize=='noResize') * ('/noResize/') + (author_id!='None') * ('single_authors/'+author_id+'/' ) \
215
+ + mode + (resize!='noResize') * (('_initGap%s'%(init_gap)) * (init_gap>0) + ('_hGap%s'%(h_gap)) * (h_gap>0) \
216
+ + '_NoDiscard_wide' * (not discard_wide) + '_NoDiscard_wide' * (not discard_narr))+'_unlabeld' * (not labeled) +\
217
+ (('IAM' in outputPath) and remove_punc) *'_removePunc'
218
+ print(outputPath)
219
+ if os.path.exists(outputPath):
220
+ shutil.rmtree(outputPath)
221
+ os.makedirs(outputPath)
222
+ else:
223
+ os.makedirs(outputPath)
224
+ env = lmdb.open(outputPath, map_size=1099511627776)
225
+ cache = {}
226
+ cnt = 1
227
+ discard_wide = False
228
+
229
+
230
+
231
+
232
+ for i in tqdm(range(nSamples)):
233
+ imagePath = image_path_list[i]
234
+ #author_id = image_path_list[i].split('/')[-2]
235
+ label = label_list[i]
236
+ if not os.path.exists(imagePath):
237
+ print('%s does not exist' % imagePath)
238
+ continue
239
+ try:
240
+ im = Image.open(imagePath)
241
+ except:
242
+ continue
243
+ if resize in ['charResize', 'keepRatio']:
244
+ width, height = im.size
245
+ new_height = imgH - (h_gap * 2)
246
+ len_word = len(label)
247
+ width = int(width * imgH / height)
248
+ new_width = width
249
+ if resize=='charResize':
250
+ if (width/len_word > (charmaxW-1)) or (width/len_word < charminW) :
251
+ if discard_wide and width/len_word > 3*((charmaxW-1)):
252
+ print('%s has a width larger than max image width' % imagePath)
253
+ continue
254
+ if discard_narr and (width / len_word) < (charminW/3):
255
+ print('%s has a width smaller than min image width' % imagePath)
256
+ continue
257
+ else:
258
+ new_width = len_word * random.randrange(charminW, charmaxW)
259
+
260
+ # reshapeRun all_gather on arbitrary picklable data (not necessarily tensors) the image to the new dimensions
261
+ im = im.resize((new_width, new_height))
262
+ # append with 256 to add left, upper and lower white edges
263
+ init_w = int(random.normalvariate(init_gap, init_gap / 2))
264
+ new_im = Image.new("RGB", (new_width+init_gap, imgH), color=(256,256,256))
265
+ new_im.paste(im, (abs(init_w), h_gap))
266
+ im = new_im
267
+
268
+ if author_id in IMG_DATA.keys():
269
+ IMG_DATA[author_id].append({'img':im, 'label':label})
270
+
271
+ else:
272
+ IMG_DATA[author_id] = []
273
+ IMG_DATA[author_id].append({'img':im, 'label':label})
274
+
275
+ imgByteArr = io.BytesIO()
276
+ #im.save(os.path.join(outputPath, 'IMG_'+str(cnt)+'_'+str(label)+'.jpg'))
277
+ im.save(imgByteArr, format='tiff')
278
+ wordBin = imgByteArr.getvalue()
279
+ imageKey = 'image-%09d' % cnt
280
+ labelKey = 'label-%09d' % cnt
281
+
282
+ cache[imageKey] = wordBin
283
+ if labeled:
284
+ cache[labelKey] = label
285
+ if cnt % 1000 == 0:
286
+ writeCache(env, cache)
287
+ cache = {}
288
+ print('Written %d / %d' % (cnt, nSamples))
289
+ cnt += 1
290
+
291
+ nSamples = cnt - 1
292
+ cache['num-samples'] = str(nSamples)
293
+ writeCache(env, cache)
294
+ env.close()
295
+ print('Created dataset with %d samples' % nSamples)
296
+
297
+
298
+
299
+
300
+
301
+
302
+
303
+
304
+
305
+
306
+
307
+
308
+
309
+
310
+
311
+
312
+
313
+
314
+
315
+
316
+
317
+
318
+
319
+
320
+
321
+
322
+
323
+
324
+
325
+
326
+
327
+
328
+
329
+
330
+
331
+
332
+
333
+
334
+ return IMG_DATA
335
+
336
+ def createDict(label_list, top_dir, dataset, mode, words, remove_punc):
337
+ lex_name = dataset+'_' + mode + (dataset in ['IAM','RIMES'])*('_words' * words) + (dataset=='IAM') * ('_removePunc' * remove_punc)
338
+ all_words = '-'.join(label_list).split('-')
339
+ unique_words = []
340
+ words = []
341
+ for x in tqdm(all_words):
342
+ if x!='' and x!=' ':
343
+ words.append(x)
344
+ if x not in unique_words:
345
+ unique_words.append(x)
346
+ print(len(words))
347
+ print(len(unique_words))
348
+ with open(os.path.join(top_dir, 'Lexicon', lex_name+'_stratified.txt'), "w") as file:
349
+ file.write("\n".join(unique_words))
350
+ file.close()
351
+ with open(os.path.join(top_dir, 'Lexicon', lex_name + '_NOTstratified.txt'), "w") as file:
352
+ file.write("\n".join(words))
353
+ file.close()
354
+
355
+ def printAlphabet(label_list):
356
+ # get all unique alphabets - ignoring alphabet longer than one char
357
+ all_chars = ''.join(label_list)
358
+ unique_chars = []
359
+ for x in all_chars:
360
+ if x not in unique_chars and len(x) == 1:
361
+ unique_chars.append(x)
362
+
363
+ # for unique_char in unique_chars:
364
+ print(''.join(unique_chars))
365
+
366
+ if __name__ == '__main__':
367
+
368
+ TRAIN_IDX = 'gan.iam.tr_va.gt.filter27'
369
+ TEST_IDX = 'gan.iam.test.gt.filter27'
370
+ IAM_WORD_DATASET_PATH = '../../data/IAM/nfs/users/ext_ankan.bhunia/data/Handwritten_data/IAM/wordImages/'
371
+ XMLS_PATH = '../../data/IAM/nfs/users/ext_ankan.bhunia/data/Handwritten_data/IAM/xmls/'
372
+ word_paths = {i.split('/')[-1][:-4]:i for i in glob.glob(IAM_WORD_DATASET_PATH + '*/*/*.png')}
373
+ id_to_wid = {i.split('/')[-1][:-4]:xmltodict.parse(open(i).read())['form']['@writer-id'] for i in glob.glob(XMLS_PATH+'/**')}
374
+ trainslist = [i[:-1] for i in open(TRAIN_IDX, 'r').readlines()]
375
+ testslist = [i[:-1] for i in open(TEST_IDX, 'r').readlines()]
376
+
377
+ dict_ = {'train':{}, 'test':{}}
378
+
379
+ for i in trainslist:
380
+
381
+ author_id = i.split(',')[0]
382
+ file_id, string = i.split(',')[1].split(' ')
383
+
384
+ file_path = word_paths[file_id]
385
+
386
+ if author_id in dict_['train']:
387
+ dict_['train'][author_id].append({'path':file_path, 'label':string})
388
+ else:
389
+ dict_['train'][author_id] = [{'path':file_path, 'label':string}]
390
+
391
+ for i in testslist:
392
+
393
+ author_id = i.split(',')[0]
394
+ file_id, string = i.split(',')[1].split(' ')
395
+
396
+ file_path = word_paths[file_id]
397
+
398
+ if author_id in dict_['test']:
399
+ dict_['test'][author_id].append({'path':file_path, 'label':string})
400
+ else:
401
+ dict_['test'][author_id] = [{'path':file_path, 'label':string}]
402
+
403
+
404
+ create_Dict = True # create a dictionary of the generated dataset
405
+ dataset = 'IAM' #CVL/IAM/RIMES/gw
406
+ mode = 'all' # tr/te/val/va1/va2/all
407
+ labeled = True
408
+ top_dir = '../../data/IAM/nfs/users/ext_ankan.bhunia/data/Handwritten_data/'
409
+ # parameter relevant for IAM/RIMES:
410
+ words = True # use words images, otherwise use lines
411
+ #parameters relevant for IAM:
412
+ author_number = -1 # use only images of a specific writer. If the value is -1, use all writers, otherwise use the index of this specific writer
413
+ remove_punc = True # remove images which include only one punctuation mark from the list ['.', '', ',', '"', "'", '(', ')', ':', ';', '!']
414
+
415
+ resize = 'charResize' # charResize|keepRatio|noResize - type of resize,
416
+ # char - resize so that each character's width will be in a specific range (inside this range the width will be chosen randomly),
417
+ # keepRatio - resize to a specific image height while keeping the height-width aspect-ratio the same.
418
+ # noResize - do not resize the image
419
+ imgH = 32 # height of the resized image
420
+ init_gap = 0 # insert a gap before the beginning of the text with this number of pixels
421
+ charmaxW = 17 # The maximum character width
422
+ charminW = 16 # The minimum character width
423
+ h_gap = 0 # Insert a gap below and above the text
424
+ discard_wide = True # Discard images which have a character width 3 times larger than the maximum allowed character size (instead of resizing them) - this helps discard outlier images
425
+ discard_narr = True # Discard images which have a character width 3 times smaller than the minimum allowed charcter size.
426
+
427
+
428
+ IMG_DATA = {}
429
+
430
+
431
+
432
+ for idx_auth in range(1669999):
433
+
434
+
435
+
436
+ print ('Processing '+ str(idx_auth))
437
+ image_path_list, label_list, outputPath, author_id = create_img_label_list(top_dir,dataset, mode, words, idx_auth, remove_punc)
438
+ IMG_DATA[author_id] = []
439
+ # in a previous version we also cut the white edges of the image to keep a tight rectangle around the word but it
440
+ # seems in all the datasets we use this is already the case so I removed it. If there are problems maybe we should add this back.
441
+ IMG_DATA = createDataset(IMG_DATA, image_path_list, label_list, outputPath, mode, author_id, remove_punc, resize, imgH, init_gap, h_gap, charminW, charmaxW, discard_wide, discard_narr, labeled)
442
+
443
+
444
+ #if create_Dict:
445
+ # createDict(label_list, top_dir, dataset, mode, words, remove_punc)
446
+ #printAlphabet(label_list)
447
+ import pickle
448
+
449
+ dict_ = {}
450
+ for id_ in IMG_DATA.keys():
451
+ author_id = id_to_wid[id_]
452
+
453
+ if author_id in dict_.keys():
454
+ dict_[author_id].extend(IMG_DATA[id_])
455
+ else:
456
+ dict_[author_id] = IMG_DATA[id_]
457
+
458
+ #pickle.dump(IMG_DATA, '/root/IAM')
Han/files/.DS_Store ADDED
Binary file (6.15 kB). View file
 
Han/files/english_words.txt ADDED
The diff for this file is too large to render. See raw diff
 
Han/files/example_data/style-1/im_0.png ADDED
Han/files/example_data/style-1/im_1.png ADDED
Han/files/example_data/style-1/im_10.png ADDED
Han/files/example_data/style-1/im_11.png ADDED
Han/files/example_data/style-1/im_12.png ADDED
Han/files/example_data/style-1/im_13.png ADDED
Han/files/example_data/style-1/im_14.png ADDED
Han/files/example_data/style-1/im_2.png ADDED
Han/files/example_data/style-1/im_3.png ADDED
Han/files/example_data/style-1/im_4.png ADDED
Han/files/example_data/style-1/im_5.png ADDED
Han/files/example_data/style-1/im_6.png ADDED
Han/files/example_data/style-1/im_7.png ADDED
Han/files/example_data/style-1/im_8.png ADDED
Han/files/example_data/style-1/im_9.png ADDED
Han/files/example_data/style-10/im_0.png ADDED
Han/files/example_data/style-10/im_1.png ADDED
Han/files/example_data/style-10/im_10.png ADDED
Han/files/example_data/style-10/im_11.png ADDED
Han/files/example_data/style-10/im_12.png ADDED
Han/files/example_data/style-10/im_13.png ADDED
Han/files/example_data/style-10/im_14.png ADDED
Han/files/example_data/style-10/im_2.png ADDED
Han/files/example_data/style-10/im_3.png ADDED
Han/files/example_data/style-10/im_4.png ADDED
Han/files/example_data/style-10/im_5.png ADDED
Han/files/example_data/style-10/im_6.png ADDED
Han/files/example_data/style-10/im_7.png ADDED
Han/files/example_data/style-10/im_8.png ADDED
Han/files/example_data/style-10/im_9.png ADDED
Han/files/example_data/style-102/im_0.png ADDED
Han/files/example_data/style-102/im_1.png ADDED
Han/files/example_data/style-102/im_10.png ADDED
Han/files/example_data/style-102/im_11.png ADDED
Han/files/example_data/style-102/im_12.png ADDED
Han/files/example_data/style-102/im_13.png ADDED
Han/files/example_data/style-102/im_14.png ADDED
Han/files/example_data/style-102/im_2.png ADDED