--- license: gemma base_model: google/paligemma-3b-pt-224 tags: - generated_from_trainer datasets: - imagefolder model-index: - name: paligemma_age results: [] --- # FaceScanPaliGemma_Age ``` python from PIL import Image import torch from transformers import PaliGemmaProcessor, PaliGemmaForConditionalGeneration, BitsAndBytesConfig, TrainingArguments, Trainer model = PaliGemmaForConditionalGeneration.from_pretrained('NYUAD-ComNets/FaceScanPaliGemma_Age',torch_dtype=torch.bfloat16) input_text = "what is the age group of the person in the image?" processor = PaliGemmaProcessor.from_pretrained("google/paligemma-3b-pt-224") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) input_image = Image.open('image_path') inputs = processor(text=input_text, images=input_image, padding="longest", do_convert_rgb=True, return_tensors="pt").to(device) inputs = inputs.to(dtype=model.dtype) with torch.no_grad(): output = model.generate(**inputs, max_length=500) result=processor.decode(output[0], skip_special_tokens=True)[len(input_text):].strip() ``` ## Model description This model is a fine-tuned version of [google/paligemma-3b-pt-224](https://huggingface.co/google/paligemma-3b-pt-224) on the FairFace dataset. The model aims to classify the age of face image or image with one person into five groups such as from 0 to 9, from 10 to 19, from 20 to 39, from 40 ro 59, More than 60 ## Model Performance Accuracy: 80 %, F1 score: 74 % ## Intended uses & limitations This model is used for research purposes ## Training and evaluation data FairFace dataset was used for training and validating the model ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2 - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.42.4 - Pytorch 2.1.2+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1 # BibTeX entry and citation info ``` @article{aldahoul2024exploring, title={Exploring Vision Language Models for Facial Attribute Recognition: Emotion, Race, Gender, and Age}, author={AlDahoul, Nouar and Tan, Myles Joshua Toledo and Kasireddy, Harishwar Reddy and Zaki, Yasir}, journal={arXiv preprint arXiv:2410.24148}, year={2024} } @misc{ComNets, url={https://huggingface.co/NYUAD-ComNets/FaceScanPaliGemma_Age](https://huggingface.co/NYUAD-ComNets/FaceScanPaliGemma_Age)}, title={FaceScanPaliGemma_Age}, author={Nouar AlDahoul, Yasir Zaki} }