NabeelShar
commited on
Commit
•
28c5c1e
1
Parent(s):
e26f0b2
Update README.md
Browse files
README.md
CHANGED
@@ -1,99 +1,7 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
-
tags:
|
4 |
-
- generated_from_trainer
|
5 |
-
datasets:
|
6 |
-
- imagefolder
|
7 |
-
metrics:
|
8 |
-
- accuracy
|
9 |
-
- precision
|
10 |
-
- recall
|
11 |
-
- f1
|
12 |
-
model-index:
|
13 |
-
- name: emotion-dectect
|
14 |
-
results:
|
15 |
-
- task:
|
16 |
-
name: Image Classification
|
17 |
-
type: image-classification
|
18 |
-
dataset:
|
19 |
-
name: imagefolder
|
20 |
-
type: imagefolder
|
21 |
-
config: default
|
22 |
-
split: train
|
23 |
-
args: default
|
24 |
-
metrics:
|
25 |
-
- name: Accuracy
|
26 |
-
type: accuracy
|
27 |
-
value: 0.8807339449541285
|
28 |
-
- name: Precision
|
29 |
-
type: precision
|
30 |
-
value: 0.8768597487153273
|
31 |
-
- name: Recall
|
32 |
-
type: recall
|
33 |
-
value: 0.8807339449541285
|
34 |
-
- name: F1
|
35 |
-
type: f1
|
36 |
-
value: 0.8782945902988435
|
37 |
-
---
|
38 |
-
|
39 |
-
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
40 |
-
should probably proofread and complete it, then remove this comment. -->
|
41 |
-
|
42 |
-
# google-vit-base-patch16-224-cartoon-emotion-detection
|
43 |
-
|
44 |
-
This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset.
|
45 |
-
It achieves the following results on the evaluation set:
|
46 |
-
- Loss: 0.3706
|
47 |
-
- Accuracy: 0.8807
|
48 |
-
- Precision: 0.8769
|
49 |
-
- Recall: 0.8807
|
50 |
-
- F1: 0.8783
|
51 |
-
|
52 |
-
## Model description
|
53 |
-
|
54 |
-
More information needed
|
55 |
-
|
56 |
-
## Intended uses & limitations
|
57 |
-
|
58 |
-
More information needed
|
59 |
-
|
60 |
-
## Training and evaluation data
|
61 |
-
|
62 |
-
More information needed
|
63 |
-
|
64 |
-
## Training procedure
|
65 |
-
|
66 |
-
### Training hyperparameters
|
67 |
-
|
68 |
-
The following hyperparameters were used during training:
|
69 |
-
- learning_rate: 0.00012
|
70 |
-
- train_batch_size: 64
|
71 |
-
- eval_batch_size: 64
|
72 |
-
- seed: 42
|
73 |
-
- gradient_accumulation_steps: 4
|
74 |
-
- total_train_batch_size: 256
|
75 |
-
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
76 |
-
- lr_scheduler_type: linear
|
77 |
-
- lr_scheduler_warmup_ratio: 0.1
|
78 |
-
- num_epochs: 10
|
79 |
-
|
80 |
-
### Training results
|
81 |
-
|
82 |
-
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
83 |
-
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
|
84 |
-
| No log | 0.97 | 8 | 0.9902 | 0.5596 | 0.5506 | 0.5596 | 0.5360 |
|
85 |
-
| 1.242 | 1.97 | 16 | 0.5157 | 0.8165 | 0.8195 | 0.8165 | 0.8132 |
|
86 |
-
| 0.4438 | 2.97 | 24 | 0.3871 | 0.8440 | 0.8516 | 0.8440 | 0.8446 |
|
87 |
-
| 0.1768 | 3.97 | 32 | 0.3531 | 0.8624 | 0.8653 | 0.8624 | 0.8585 |
|
88 |
-
| 0.0661 | 4.97 | 40 | 0.3780 | 0.8716 | 0.8693 | 0.8716 | 0.8674 |
|
89 |
-
| 0.0661 | 5.97 | 48 | 0.3747 | 0.8624 | 0.8649 | 0.8624 | 0.8632 |
|
90 |
-
| 0.0375 | 6.97 | 56 | 0.3760 | 0.8991 | 0.8961 | 0.8991 | 0.8971 |
|
91 |
-
| 0.0362 | 7.97 | 64 | 0.4092 | 0.8716 | 0.8684 | 0.8716 | 0.8681 |
|
92 |
-
| 0.0322 | 8.97 | 72 | 0.3499 | 0.8899 | 0.8880 | 0.8899 | 0.8888 |
|
93 |
-
| 0.029 | 9.97 | 80 | 0.3706 | 0.8807 | 0.8769 | 0.8807 | 0.8783 |
|
94 |
-
|
95 |
|
96 |
-
|
97 |
|
98 |
- Transformers 4.25.1
|
99 |
- Pytorch 1.13.1+cu117
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
+
#versions
|
5 |
|
6 |
- Transformers 4.25.1
|
7 |
- Pytorch 1.13.1+cu117
|