File size: 7,519 Bytes
3a25a0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
# DreamBooth training example for Stable Diffusion 3 (SD3)

[DreamBooth](https://arxiv.org/abs/2208.12242) is a method to personalize text2image models like stable diffusion given just a few (3~5) images of a subject.

The `train_dreambooth_sd3.py` script shows how to implement the training procedure and adapt it for [Stable Diffusion 3](https://huggingface.co/papers/2403.03206). We also provide a LoRA implementation in the `train_dreambooth_lora_sd3.py` script.

> [!NOTE]
> As the model is gated, before using it with diffusers you first need to go to the [Stable Diffusion 3 Medium Hugging Face page](https://huggingface.co/stabilityai/stable-diffusion-3-medium-diffusers), fill in the form and accept the gate. Once you are in, you need to log in so that your system knows you’ve accepted the gate. Use the command below to log in:

```bash
huggingface-cli login
```

This will also allow us to push the trained model parameters to the Hugging Face Hub platform.

## Running locally with PyTorch

### Installing the dependencies

Before running the scripts, make sure to install the library's training dependencies:

**Important**

To make sure you can successfully run the latest versions of the example scripts, we highly recommend **installing from source** and keeping the install up to date as we update the example scripts frequently and install some example-specific requirements. To do this, execute the following steps in a new virtual environment:

```bash
git clone https://github.com/huggingface/diffusers
cd diffusers
pip install -e .
```

Then cd in the `examples/dreambooth` folder and run
```bash
pip install -r requirements_sd3.txt
```

And initialize an [🤗Accelerate](https://github.com/huggingface/accelerate/) environment with:

```bash
accelerate config
```

Or for a default accelerate configuration without answering questions about your environment

```bash
accelerate config default
```

Or if your environment doesn't support an interactive shell (e.g., a notebook)

```python
from accelerate.utils import write_basic_config
write_basic_config()
```

When running `accelerate config`, if we specify torch compile mode to True there can be dramatic speedups.
Note also that we use PEFT library as backend for LoRA training, make sure to have `peft>=0.6.0` installed in your environment.


### Dog toy example

Now let's get our dataset. For this example we will use some dog images: https://huggingface.co/datasets/diffusers/dog-example.

Let's first download it locally:

```python
from huggingface_hub import snapshot_download

local_dir = "./dog"
snapshot_download(
    "diffusers/dog-example",
    local_dir=local_dir, repo_type="dataset",
    ignore_patterns=".gitattributes",
)
```

This will also allow us to push the trained LoRA parameters to the Hugging Face Hub platform.

Now, we can launch training using:

```bash
export MODEL_NAME="stabilityai/stable-diffusion-3-medium-diffusers"
export INSTANCE_DIR="dog"
export OUTPUT_DIR="trained-sd3"

accelerate launch train_dreambooth_sd3.py \
  --pretrained_model_name_or_path=$MODEL_NAME  \
  --instance_data_dir=$INSTANCE_DIR \
  --output_dir=$OUTPUT_DIR \
  --mixed_precision="fp16" \
  --instance_prompt="a photo of sks dog" \
  --resolution=1024 \
  --train_batch_size=1 \
  --gradient_accumulation_steps=4 \
  --learning_rate=1e-4 \
  --report_to="wandb" \
  --lr_scheduler="constant" \
  --lr_warmup_steps=0 \
  --max_train_steps=500 \
  --validation_prompt="A photo of sks dog in a bucket" \
  --validation_epochs=25 \
  --seed="0" \
  --push_to_hub
```

To better track our training experiments, we're using the following flags in the command above:

* `report_to="wandb` will ensure the training runs are tracked on Weights and Biases. To use it, be sure to install `wandb` with `pip install wandb`.
* `validation_prompt` and `validation_epochs` to allow the script to do a few validation inference runs. This allows us to qualitatively check if the training is progressing as expected.

> [!NOTE]
> If you want to train using long prompts with the T5 text encoder, you can use `--max_sequence_length` to set the token limit. The default is 77, but it can be increased to as high as 512. Note that this will use more resources and may slow down the training in some cases.

> [!TIP]
> You can pass `--use_8bit_adam` to reduce the memory requirements of training. Make sure to install `bitsandbytes` if you want to do so.

## LoRA + DreamBooth

[LoRA](https://huggingface.co/docs/peft/conceptual_guides/adapter#low-rank-adaptation-lora) is a popular parameter-efficient fine-tuning technique that allows you to achieve full-finetuning like performance but with a fraction of learnable parameters.

Note also that we use PEFT library as backend for LoRA training, make sure to have `peft>=0.6.0` installed in your environment.

To perform DreamBooth with LoRA, run:

```bash
export MODEL_NAME="stabilityai/stable-diffusion-3-medium-diffusers"
export INSTANCE_DIR="dog"
export OUTPUT_DIR="trained-sd3-lora"

accelerate launch train_dreambooth_lora_sd3.py \
  --pretrained_model_name_or_path=$MODEL_NAME  \
  --instance_data_dir=$INSTANCE_DIR \
  --output_dir=$OUTPUT_DIR \
  --mixed_precision="fp16" \
  --instance_prompt="a photo of sks dog" \
  --resolution=512 \
  --train_batch_size=1 \
  --gradient_accumulation_steps=4 \
  --learning_rate=1e-5 \
  --report_to="wandb" \
  --lr_scheduler="constant" \
  --lr_warmup_steps=0 \
  --max_train_steps=500 \
  --validation_prompt="A photo of sks dog in a bucket" \
  --validation_epochs=25 \
  --seed="0" \
  --push_to_hub
```

### Text Encoder Training
Alongside the transformer, LoRA fine-tuning of the CLIP text encoders is now also supported.
To do so, just specify `--train_text_encoder` while launching training. Please keep the following points in mind:

> [!NOTE]
> SD3 has three text encoders (CLIP L/14, OpenCLIP bigG/14, and T5-v1.1-XXL).
By enabling `--train_text_encoder`, LoRA fine-tuning of both **CLIP encoders** is performed. At the moment, T5 fine-tuning is not supported and weights remain frozen when text encoder training is enabled.

To perform DreamBooth LoRA with text-encoder training, run:
```bash
export MODEL_NAME="stabilityai/stable-diffusion-3-medium-diffusers"
export OUTPUT_DIR="trained-sd3-lora"

accelerate launch train_dreambooth_lora_sd3.py \
  --pretrained_model_name_or_path=$MODEL_NAME  \
  --output_dir=$OUTPUT_DIR \
  --dataset_name="Norod78/Yarn-art-style" \
  --instance_prompt="a photo of TOK yarn art dog" \
  --resolution=1024 \
  --train_batch_size=1 \
  --train_text_encoder\
  --gradient_accumulation_steps=1 \
  --optimizer="prodigy"\
  --learning_rate=1.0 \
  --text_encoder_lr=1.0 \
  --report_to="wandb" \
  --lr_scheduler="constant" \
  --lr_warmup_steps=0 \
  --max_train_steps=1500 \
  --rank=32 \
  --seed="0" \
  --push_to_hub
```

## Other notes

1. We default to the "logit_normal" weighting scheme for the loss following the SD3 paper. Thanks to @bghira for helping us discover that for other weighting schemes supported from the training script, training may incur numerical instabilities.
2. Thanks to `bghira`, `JinxuXiang`, and `bendanzzc` for helping us discover a bug in how VAE encoding was being done previously. This has been fixed in [#8917](https://github.com/huggingface/diffusers/pull/8917).
3. Additionally, we now have the option to control if we want to apply preconditioning to the model outputs via a `--precondition_outputs` CLI arg. It affects how the model `target` is calculated as well.