File size: 12,338 Bytes
3a25a0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
import argparse

import huggingface_hub
import k_diffusion as K
import torch

from diffusers import UNet2DConditionModel


UPSCALER_REPO = "pcuenq/k-upscaler"


def resnet_to_diffusers_checkpoint(resnet, checkpoint, *, diffusers_resnet_prefix, resnet_prefix):
    rv = {
        # norm1
        f"{diffusers_resnet_prefix}.norm1.linear.weight": checkpoint[f"{resnet_prefix}.main.0.mapper.weight"],
        f"{diffusers_resnet_prefix}.norm1.linear.bias": checkpoint[f"{resnet_prefix}.main.0.mapper.bias"],
        # conv1
        f"{diffusers_resnet_prefix}.conv1.weight": checkpoint[f"{resnet_prefix}.main.2.weight"],
        f"{diffusers_resnet_prefix}.conv1.bias": checkpoint[f"{resnet_prefix}.main.2.bias"],
        # norm2
        f"{diffusers_resnet_prefix}.norm2.linear.weight": checkpoint[f"{resnet_prefix}.main.4.mapper.weight"],
        f"{diffusers_resnet_prefix}.norm2.linear.bias": checkpoint[f"{resnet_prefix}.main.4.mapper.bias"],
        # conv2
        f"{diffusers_resnet_prefix}.conv2.weight": checkpoint[f"{resnet_prefix}.main.6.weight"],
        f"{diffusers_resnet_prefix}.conv2.bias": checkpoint[f"{resnet_prefix}.main.6.bias"],
    }

    if resnet.conv_shortcut is not None:
        rv.update(
            {
                f"{diffusers_resnet_prefix}.conv_shortcut.weight": checkpoint[f"{resnet_prefix}.skip.weight"],
            }
        )

    return rv


def self_attn_to_diffusers_checkpoint(checkpoint, *, diffusers_attention_prefix, attention_prefix):
    weight_q, weight_k, weight_v = checkpoint[f"{attention_prefix}.qkv_proj.weight"].chunk(3, dim=0)
    bias_q, bias_k, bias_v = checkpoint[f"{attention_prefix}.qkv_proj.bias"].chunk(3, dim=0)
    rv = {
        # norm
        f"{diffusers_attention_prefix}.norm1.linear.weight": checkpoint[f"{attention_prefix}.norm_in.mapper.weight"],
        f"{diffusers_attention_prefix}.norm1.linear.bias": checkpoint[f"{attention_prefix}.norm_in.mapper.bias"],
        # to_q
        f"{diffusers_attention_prefix}.attn1.to_q.weight": weight_q.squeeze(-1).squeeze(-1),
        f"{diffusers_attention_prefix}.attn1.to_q.bias": bias_q,
        # to_k
        f"{diffusers_attention_prefix}.attn1.to_k.weight": weight_k.squeeze(-1).squeeze(-1),
        f"{diffusers_attention_prefix}.attn1.to_k.bias": bias_k,
        # to_v
        f"{diffusers_attention_prefix}.attn1.to_v.weight": weight_v.squeeze(-1).squeeze(-1),
        f"{diffusers_attention_prefix}.attn1.to_v.bias": bias_v,
        # to_out
        f"{diffusers_attention_prefix}.attn1.to_out.0.weight": checkpoint[f"{attention_prefix}.out_proj.weight"]
        .squeeze(-1)
        .squeeze(-1),
        f"{diffusers_attention_prefix}.attn1.to_out.0.bias": checkpoint[f"{attention_prefix}.out_proj.bias"],
    }

    return rv


def cross_attn_to_diffusers_checkpoint(
    checkpoint, *, diffusers_attention_prefix, diffusers_attention_index, attention_prefix
):
    weight_k, weight_v = checkpoint[f"{attention_prefix}.kv_proj.weight"].chunk(2, dim=0)
    bias_k, bias_v = checkpoint[f"{attention_prefix}.kv_proj.bias"].chunk(2, dim=0)

    rv = {
        # norm2 (ada groupnorm)
        f"{diffusers_attention_prefix}.norm{diffusers_attention_index}.linear.weight": checkpoint[
            f"{attention_prefix}.norm_dec.mapper.weight"
        ],
        f"{diffusers_attention_prefix}.norm{diffusers_attention_index}.linear.bias": checkpoint[
            f"{attention_prefix}.norm_dec.mapper.bias"
        ],
        # layernorm on encoder_hidden_state
        f"{diffusers_attention_prefix}.attn{diffusers_attention_index}.norm_cross.weight": checkpoint[
            f"{attention_prefix}.norm_enc.weight"
        ],
        f"{diffusers_attention_prefix}.attn{diffusers_attention_index}.norm_cross.bias": checkpoint[
            f"{attention_prefix}.norm_enc.bias"
        ],
        # to_q
        f"{diffusers_attention_prefix}.attn{diffusers_attention_index}.to_q.weight": checkpoint[
            f"{attention_prefix}.q_proj.weight"
        ]
        .squeeze(-1)
        .squeeze(-1),
        f"{diffusers_attention_prefix}.attn{diffusers_attention_index}.to_q.bias": checkpoint[
            f"{attention_prefix}.q_proj.bias"
        ],
        # to_k
        f"{diffusers_attention_prefix}.attn{diffusers_attention_index}.to_k.weight": weight_k.squeeze(-1).squeeze(-1),
        f"{diffusers_attention_prefix}.attn{diffusers_attention_index}.to_k.bias": bias_k,
        # to_v
        f"{diffusers_attention_prefix}.attn{diffusers_attention_index}.to_v.weight": weight_v.squeeze(-1).squeeze(-1),
        f"{diffusers_attention_prefix}.attn{diffusers_attention_index}.to_v.bias": bias_v,
        # to_out
        f"{diffusers_attention_prefix}.attn{diffusers_attention_index}.to_out.0.weight": checkpoint[
            f"{attention_prefix}.out_proj.weight"
        ]
        .squeeze(-1)
        .squeeze(-1),
        f"{diffusers_attention_prefix}.attn{diffusers_attention_index}.to_out.0.bias": checkpoint[
            f"{attention_prefix}.out_proj.bias"
        ],
    }

    return rv


def block_to_diffusers_checkpoint(block, checkpoint, block_idx, block_type):
    block_prefix = "inner_model.u_net.u_blocks" if block_type == "up" else "inner_model.u_net.d_blocks"
    block_prefix = f"{block_prefix}.{block_idx}"

    diffusers_checkpoint = {}

    if not hasattr(block, "attentions"):
        n = 1  # resnet only
    elif not block.attentions[0].add_self_attention:
        n = 2  # resnet -> cross-attention
    else:
        n = 3  # resnet -> self-attention -> cross-attention)

    for resnet_idx, resnet in enumerate(block.resnets):
        # diffusers_resnet_prefix = f"{diffusers_up_block_prefix}.resnets.{resnet_idx}"
        diffusers_resnet_prefix = f"{block_type}_blocks.{block_idx}.resnets.{resnet_idx}"
        idx = n * resnet_idx if block_type == "up" else n * resnet_idx + 1
        resnet_prefix = f"{block_prefix}.{idx}" if block_type == "up" else f"{block_prefix}.{idx}"

        diffusers_checkpoint.update(
            resnet_to_diffusers_checkpoint(
                resnet, checkpoint, diffusers_resnet_prefix=diffusers_resnet_prefix, resnet_prefix=resnet_prefix
            )
        )

    if hasattr(block, "attentions"):
        for attention_idx, attention in enumerate(block.attentions):
            diffusers_attention_prefix = f"{block_type}_blocks.{block_idx}.attentions.{attention_idx}"
            idx = n * attention_idx + 1 if block_type == "up" else n * attention_idx + 2
            self_attention_prefix = f"{block_prefix}.{idx}"
            cross_attention_prefix = f"{block_prefix}.{idx }"
            cross_attention_index = 1 if not attention.add_self_attention else 2
            idx = (
                n * attention_idx + cross_attention_index
                if block_type == "up"
                else n * attention_idx + cross_attention_index + 1
            )
            cross_attention_prefix = f"{block_prefix}.{idx }"

            diffusers_checkpoint.update(
                cross_attn_to_diffusers_checkpoint(
                    checkpoint,
                    diffusers_attention_prefix=diffusers_attention_prefix,
                    diffusers_attention_index=2,
                    attention_prefix=cross_attention_prefix,
                )
            )

            if attention.add_self_attention is True:
                diffusers_checkpoint.update(
                    self_attn_to_diffusers_checkpoint(
                        checkpoint,
                        diffusers_attention_prefix=diffusers_attention_prefix,
                        attention_prefix=self_attention_prefix,
                    )
                )

    return diffusers_checkpoint


def unet_to_diffusers_checkpoint(model, checkpoint):
    diffusers_checkpoint = {}

    # pre-processing
    diffusers_checkpoint.update(
        {
            "conv_in.weight": checkpoint["inner_model.proj_in.weight"],
            "conv_in.bias": checkpoint["inner_model.proj_in.bias"],
        }
    )

    # timestep and class embedding
    diffusers_checkpoint.update(
        {
            "time_proj.weight": checkpoint["inner_model.timestep_embed.weight"].squeeze(-1),
            "time_embedding.linear_1.weight": checkpoint["inner_model.mapping.0.weight"],
            "time_embedding.linear_1.bias": checkpoint["inner_model.mapping.0.bias"],
            "time_embedding.linear_2.weight": checkpoint["inner_model.mapping.2.weight"],
            "time_embedding.linear_2.bias": checkpoint["inner_model.mapping.2.bias"],
            "time_embedding.cond_proj.weight": checkpoint["inner_model.mapping_cond.weight"],
        }
    )

    # down_blocks
    for down_block_idx, down_block in enumerate(model.down_blocks):
        diffusers_checkpoint.update(block_to_diffusers_checkpoint(down_block, checkpoint, down_block_idx, "down"))

    # up_blocks
    for up_block_idx, up_block in enumerate(model.up_blocks):
        diffusers_checkpoint.update(block_to_diffusers_checkpoint(up_block, checkpoint, up_block_idx, "up"))

    # post-processing
    diffusers_checkpoint.update(
        {
            "conv_out.weight": checkpoint["inner_model.proj_out.weight"],
            "conv_out.bias": checkpoint["inner_model.proj_out.bias"],
        }
    )

    return diffusers_checkpoint


def unet_model_from_original_config(original_config):
    in_channels = original_config["input_channels"] + original_config["unet_cond_dim"]
    out_channels = original_config["input_channels"] + (1 if original_config["has_variance"] else 0)

    block_out_channels = original_config["channels"]

    assert (
        len(set(original_config["depths"])) == 1
    ), "UNet2DConditionModel currently do not support blocks with different number of layers"
    layers_per_block = original_config["depths"][0]

    class_labels_dim = original_config["mapping_cond_dim"]
    cross_attention_dim = original_config["cross_cond_dim"]

    attn1_types = []
    attn2_types = []
    for s, c in zip(original_config["self_attn_depths"], original_config["cross_attn_depths"]):
        if s:
            a1 = "self"
            a2 = "cross" if c else None
        elif c:
            a1 = "cross"
            a2 = None
        else:
            a1 = None
            a2 = None
        attn1_types.append(a1)
        attn2_types.append(a2)

    unet = UNet2DConditionModel(
        in_channels=in_channels,
        out_channels=out_channels,
        down_block_types=("KDownBlock2D", "KCrossAttnDownBlock2D", "KCrossAttnDownBlock2D", "KCrossAttnDownBlock2D"),
        mid_block_type=None,
        up_block_types=("KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KUpBlock2D"),
        block_out_channels=block_out_channels,
        layers_per_block=layers_per_block,
        act_fn="gelu",
        norm_num_groups=None,
        cross_attention_dim=cross_attention_dim,
        attention_head_dim=64,
        time_cond_proj_dim=class_labels_dim,
        resnet_time_scale_shift="scale_shift",
        time_embedding_type="fourier",
        timestep_post_act="gelu",
        conv_in_kernel=1,
        conv_out_kernel=1,
    )

    return unet


def main(args):
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    orig_config_path = huggingface_hub.hf_hub_download(UPSCALER_REPO, "config_laion_text_cond_latent_upscaler_2.json")
    orig_weights_path = huggingface_hub.hf_hub_download(
        UPSCALER_REPO, "laion_text_cond_latent_upscaler_2_1_00470000_slim.pth"
    )
    print(f"loading original model configuration from {orig_config_path}")
    print(f"loading original model checkpoint from {orig_weights_path}")

    print("converting to diffusers unet")
    orig_config = K.config.load_config(open(orig_config_path))["model"]
    model = unet_model_from_original_config(orig_config)

    orig_checkpoint = torch.load(orig_weights_path, map_location=device)["model_ema"]
    converted_checkpoint = unet_to_diffusers_checkpoint(model, orig_checkpoint)

    model.load_state_dict(converted_checkpoint, strict=True)
    model.save_pretrained(args.dump_path)
    print(f"saving converted unet model in {args.dump_path}")


if __name__ == "__main__":
    parser = argparse.ArgumentParser()

    parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.")
    args = parser.parse_args()

    main(args)