File size: 31,680 Bytes
3a25a0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
<!--Copyright 2024 The HuggingFace Team. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->

# Kandinsky

[[open-in-colab]]

The Kandinsky models are a series of multilingual text-to-image generation models. The Kandinsky 2.0 model uses two multilingual text encoders and concatenates those results for the UNet.

[Kandinsky 2.1](../api/pipelines/kandinsky) changes the architecture to include an image prior model ([`CLIP`](https://huggingface.co/docs/transformers/model_doc/clip)) to generate a mapping between text and image embeddings. The mapping provides better text-image alignment and it is used with the text embeddings during training, leading to higher quality results. Finally, Kandinsky 2.1 uses a [Modulating Quantized Vectors (MoVQ)](https://huggingface.co/papers/2209.09002) decoder - which adds a spatial conditional normalization layer to increase photorealism - to decode the latents into images.

[Kandinsky 2.2](../api/pipelines/kandinsky_v22) improves on the previous model by replacing the image encoder of the image prior model with a larger CLIP-ViT-G model to improve quality. The image prior model was also retrained on images with different resolutions and aspect ratios to generate higher-resolution images and different image sizes.

[Kandinsky 3](../api/pipelines/kandinsky3) simplifies the architecture and shifts away from the two-stage generation process involving the prior model and diffusion model. Instead, Kandinsky 3 uses [Flan-UL2](https://huggingface.co/google/flan-ul2) to encode text, a UNet with [BigGan-deep](https://hf.co/papers/1809.11096) blocks, and [Sber-MoVQGAN](https://github.com/ai-forever/MoVQGAN) to decode the latents into images. Text understanding and generated image quality are primarily achieved by using a larger text encoder and UNet.

This guide will show you how to use the Kandinsky models for text-to-image, image-to-image, inpainting, interpolation, and more.

Before you begin, make sure you have the following libraries installed:

```py
# uncomment to install the necessary libraries in Colab
#!pip install -q diffusers transformers accelerate
```

<Tip warning={true}>

Kandinsky 2.1 and 2.2 usage is very similar! The only difference is Kandinsky 2.2 doesn't accept `prompt` as an input when decoding the latents. Instead, Kandinsky 2.2 only accepts `image_embeds` during decoding.

<br>

Kandinsky 3 has a more concise architecture and it doesn't require a prior model. This means it's usage is identical to other diffusion models like [Stable Diffusion XL](sdxl).

</Tip>

## Text-to-image

To use the Kandinsky models for any task, you always start by setting up the prior pipeline to encode the prompt and generate the image embeddings. The prior pipeline also generates `negative_image_embeds` that correspond to the negative prompt `""`. For better results, you can pass an actual `negative_prompt` to the prior pipeline, but this'll increase the effective batch size of the prior pipeline by 2x.

<hfoptions id="text-to-image">
<hfoption id="Kandinsky 2.1">

```py
from diffusers import KandinskyPriorPipeline, KandinskyPipeline
import torch

prior_pipeline = KandinskyPriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-1-prior", torch_dtype=torch.float16).to("cuda")
pipeline = KandinskyPipeline.from_pretrained("kandinsky-community/kandinsky-2-1", torch_dtype=torch.float16).to("cuda")

prompt = "A alien cheeseburger creature eating itself, claymation, cinematic, moody lighting"
negative_prompt = "low quality, bad quality" # optional to include a negative prompt, but results are usually better
image_embeds, negative_image_embeds = prior_pipeline(prompt, negative_prompt, guidance_scale=1.0).to_tuple()
```

Now pass all the prompts and embeddings to the [`KandinskyPipeline`] to generate an image:

```py
image = pipeline(prompt, image_embeds=image_embeds, negative_prompt=negative_prompt, negative_image_embeds=negative_image_embeds, height=768, width=768).images[0]
image
```

<div class="flex justify-center">
    <img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/kandinsky-docs/cheeseburger.png"/>
</div>

</hfoption>
<hfoption id="Kandinsky 2.2">

```py
from diffusers import KandinskyV22PriorPipeline, KandinskyV22Pipeline
import torch

prior_pipeline = KandinskyV22PriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16).to("cuda")
pipeline = KandinskyV22Pipeline.from_pretrained("kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16).to("cuda")

prompt = "A alien cheeseburger creature eating itself, claymation, cinematic, moody lighting"
negative_prompt = "low quality, bad quality" # optional to include a negative prompt, but results are usually better
image_embeds, negative_image_embeds = prior_pipeline(prompt, guidance_scale=1.0).to_tuple()
```

Pass the `image_embeds` and `negative_image_embeds` to the [`KandinskyV22Pipeline`] to generate an image:

```py
image = pipeline(image_embeds=image_embeds, negative_image_embeds=negative_image_embeds, height=768, width=768).images[0]
image
```

<div class="flex justify-center">
    <img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/kandinsky-text-to-image.png"/>
</div>

</hfoption>
<hfoption id="Kandinsky 3">

Kandinsky 3 doesn't require a prior model so you can directly load the [`Kandinsky3Pipeline`] and pass a prompt to generate an image:

```py
from diffusers import Kandinsky3Pipeline
import torch

pipeline = Kandinsky3Pipeline.from_pretrained("kandinsky-community/kandinsky-3", variant="fp16", torch_dtype=torch.float16)
pipeline.enable_model_cpu_offload()

prompt = "A alien cheeseburger creature eating itself, claymation, cinematic, moody lighting"
image = pipeline(prompt).images[0]
image
```

</hfoption>
</hfoptions>

🤗 Diffusers also provides an end-to-end API with the [`KandinskyCombinedPipeline`] and [`KandinskyV22CombinedPipeline`], meaning you don't have to separately load the prior and text-to-image pipeline. The combined pipeline automatically loads both the prior model and the decoder. You can still set different values for the prior pipeline with the `prior_guidance_scale` and `prior_num_inference_steps` parameters if you want.

Use the [`AutoPipelineForText2Image`] to automatically call the combined pipelines under the hood:

<hfoptions id="text-to-image">
<hfoption id="Kandinsky 2.1">

```py
from diffusers import AutoPipelineForText2Image
import torch

pipeline = AutoPipelineForText2Image.from_pretrained("kandinsky-community/kandinsky-2-1", torch_dtype=torch.float16)
pipeline.enable_model_cpu_offload()

prompt = "A alien cheeseburger creature eating itself, claymation, cinematic, moody lighting"
negative_prompt = "low quality, bad quality"

image = pipeline(prompt=prompt, negative_prompt=negative_prompt, prior_guidance_scale=1.0, guidance_scale=4.0, height=768, width=768).images[0]
image
```

</hfoption>
<hfoption id="Kandinsky 2.2">

```py
from diffusers import AutoPipelineForText2Image
import torch

pipeline = AutoPipelineForText2Image.from_pretrained("kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16)
pipeline.enable_model_cpu_offload()

prompt = "A alien cheeseburger creature eating itself, claymation, cinematic, moody lighting"
negative_prompt = "low quality, bad quality"

image = pipeline(prompt=prompt, negative_prompt=negative_prompt, prior_guidance_scale=1.0, guidance_scale=4.0, height=768, width=768).images[0]
image
```

</hfoption>
</hfoptions>

## Image-to-image

For image-to-image, pass the initial image and text prompt to condition the image to the pipeline. Start by loading the prior pipeline:

<hfoptions id="image-to-image">
<hfoption id="Kandinsky 2.1">

```py
import torch
from diffusers import KandinskyImg2ImgPipeline, KandinskyPriorPipeline

prior_pipeline = KandinskyPriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-1-prior", torch_dtype=torch.float16, use_safetensors=True).to("cuda")
pipeline = KandinskyImg2ImgPipeline.from_pretrained("kandinsky-community/kandinsky-2-1", torch_dtype=torch.float16, use_safetensors=True).to("cuda")
```

</hfoption>
<hfoption id="Kandinsky 2.2">

```py
import torch
from diffusers import KandinskyV22Img2ImgPipeline, KandinskyPriorPipeline

prior_pipeline = KandinskyPriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16, use_safetensors=True).to("cuda")
pipeline = KandinskyV22Img2ImgPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16, use_safetensors=True).to("cuda")
```

</hfoption>
<hfoption id="Kandinsky 3">

Kandinsky 3 doesn't require a prior model so you can directly load the image-to-image pipeline:

```py
from diffusers import Kandinsky3Img2ImgPipeline
from diffusers.utils import load_image
import torch

pipeline = Kandinsky3Img2ImgPipeline.from_pretrained("kandinsky-community/kandinsky-3", variant="fp16", torch_dtype=torch.float16)
pipeline.enable_model_cpu_offload()
```

</hfoption>
</hfoptions>

Download an image to condition on:

```py
from diffusers.utils import load_image

# download image
url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"
original_image = load_image(url)
original_image = original_image.resize((768, 512))
```

<div class="flex justify-center">
    <img class="rounded-xl" src="https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"/>
</div>

Generate the `image_embeds` and `negative_image_embeds` with the prior pipeline:

```py
prompt = "A fantasy landscape, Cinematic lighting"
negative_prompt = "low quality, bad quality"

image_embeds, negative_image_embeds = prior_pipeline(prompt, negative_prompt).to_tuple()
```

Now pass the original image, and all the prompts and embeddings to the pipeline to generate an image:

<hfoptions id="image-to-image">
<hfoption id="Kandinsky 2.1">

```py
from diffusers.utils import make_image_grid

image = pipeline(prompt, negative_prompt=negative_prompt, image=original_image, image_embeds=image_embeds, negative_image_embeds=negative_image_embeds, height=768, width=768, strength=0.3).images[0]
make_image_grid([original_image.resize((512, 512)), image.resize((512, 512))], rows=1, cols=2)
```

<div class="flex justify-center">
    <img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/kandinsky-docs/img2img_fantasyland.png"/>
</div>

</hfoption>
<hfoption id="Kandinsky 2.2">

```py
from diffusers.utils import make_image_grid

image = pipeline(image=original_image, image_embeds=image_embeds, negative_image_embeds=negative_image_embeds, height=768, width=768, strength=0.3).images[0]
make_image_grid([original_image.resize((512, 512)), image.resize((512, 512))], rows=1, cols=2)
```

<div class="flex justify-center">
    <img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/kandinsky-image-to-image.png"/>
</div>

</hfoption>
<hfoption id="Kandinsky 3">

```py
image = pipeline(prompt, negative_prompt=negative_prompt, image=image, strength=0.75, num_inference_steps=25).images[0]
image
```

</hfoption>
</hfoptions>

🤗 Diffusers also provides an end-to-end API with the [`KandinskyImg2ImgCombinedPipeline`] and [`KandinskyV22Img2ImgCombinedPipeline`], meaning you don't have to separately load the prior and image-to-image pipeline. The combined pipeline automatically loads both the prior model and the decoder. You can still set different values for the prior pipeline with the `prior_guidance_scale` and `prior_num_inference_steps` parameters if you want.

Use the [`AutoPipelineForImage2Image`] to automatically call the combined pipelines under the hood:

<hfoptions id="image-to-image">
<hfoption id="Kandinsky 2.1">

```py
from diffusers import AutoPipelineForImage2Image
from diffusers.utils import make_image_grid, load_image
import torch

pipeline = AutoPipelineForImage2Image.from_pretrained("kandinsky-community/kandinsky-2-1", torch_dtype=torch.float16, use_safetensors=True)
pipeline.enable_model_cpu_offload()

prompt = "A fantasy landscape, Cinematic lighting"
negative_prompt = "low quality, bad quality"

url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"
original_image = load_image(url)

original_image.thumbnail((768, 768))

image = pipeline(prompt=prompt, negative_prompt=negative_prompt, image=original_image, strength=0.3).images[0]
make_image_grid([original_image.resize((512, 512)), image.resize((512, 512))], rows=1, cols=2)
```

</hfoption>
<hfoption id="Kandinsky 2.2">

```py
from diffusers import AutoPipelineForImage2Image
from diffusers.utils import make_image_grid, load_image
import torch

pipeline = AutoPipelineForImage2Image.from_pretrained("kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16)
pipeline.enable_model_cpu_offload()

prompt = "A fantasy landscape, Cinematic lighting"
negative_prompt = "low quality, bad quality"

url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"
original_image = load_image(url)

original_image.thumbnail((768, 768))

image = pipeline(prompt=prompt, negative_prompt=negative_prompt, image=original_image, strength=0.3).images[0]
make_image_grid([original_image.resize((512, 512)), image.resize((512, 512))], rows=1, cols=2)
```

</hfoption>
</hfoptions>

## Inpainting

<Tip warning={true}>

⚠️ The Kandinsky models use ⬜️ **white pixels** to represent the masked area now instead of black pixels. If you are using [`KandinskyInpaintPipeline`] in production, you need to change the mask to use white pixels:

```py
# For PIL input
import PIL.ImageOps
mask = PIL.ImageOps.invert(mask)

# For PyTorch and NumPy input
mask = 1 - mask
```

</Tip>

For inpainting, you'll need the original image, a mask of the area to replace in the original image, and a text prompt of what to inpaint. Load the prior pipeline:

<hfoptions id="inpaint">
<hfoption id="Kandinsky 2.1">

```py
from diffusers import KandinskyInpaintPipeline, KandinskyPriorPipeline
from diffusers.utils import load_image, make_image_grid
import torch
import numpy as np
from PIL import Image

prior_pipeline = KandinskyPriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-1-prior", torch_dtype=torch.float16, use_safetensors=True).to("cuda")
pipeline = KandinskyInpaintPipeline.from_pretrained("kandinsky-community/kandinsky-2-1-inpaint", torch_dtype=torch.float16, use_safetensors=True).to("cuda")
```

</hfoption>
<hfoption id="Kandinsky 2.2">

```py
from diffusers import KandinskyV22InpaintPipeline, KandinskyV22PriorPipeline
from diffusers.utils import load_image, make_image_grid
import torch
import numpy as np
from PIL import Image

prior_pipeline = KandinskyV22PriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16, use_safetensors=True).to("cuda")
pipeline = KandinskyV22InpaintPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-decoder-inpaint", torch_dtype=torch.float16, use_safetensors=True).to("cuda")
```

</hfoption>
</hfoptions>

Load an initial image and create a mask:

```py
init_image = load_image("https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/kandinsky/cat.png")
mask = np.zeros((768, 768), dtype=np.float32)
# mask area above cat's head
mask[:250, 250:-250] = 1
```

Generate the embeddings with the prior pipeline:

```py
prompt = "a hat"
prior_output = prior_pipeline(prompt)
```

Now pass the initial image, mask, and prompt and embeddings to the pipeline to generate an image:

<hfoptions id="inpaint">
<hfoption id="Kandinsky 2.1">

```py
output_image = pipeline(prompt, image=init_image, mask_image=mask, **prior_output, height=768, width=768, num_inference_steps=150).images[0]
mask = Image.fromarray((mask*255).astype('uint8'), 'L')
make_image_grid([init_image, mask, output_image], rows=1, cols=3)
```

<div class="flex justify-center">
    <img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/kandinsky-docs/inpaint_cat_hat.png"/>
</div>

</hfoption>
<hfoption id="Kandinsky 2.2">

```py
output_image = pipeline(image=init_image, mask_image=mask, **prior_output, height=768, width=768, num_inference_steps=150).images[0]
mask = Image.fromarray((mask*255).astype('uint8'), 'L')
make_image_grid([init_image, mask, output_image], rows=1, cols=3)
```

<div class="flex justify-center">
    <img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/kandinskyv22-inpaint.png"/>
</div>

</hfoption>
</hfoptions>

You can also use the end-to-end [`KandinskyInpaintCombinedPipeline`] and [`KandinskyV22InpaintCombinedPipeline`] to call the prior and decoder pipelines together under the hood. Use the [`AutoPipelineForInpainting`] for this:

<hfoptions id="inpaint">
<hfoption id="Kandinsky 2.1">

```py
import torch
import numpy as np
from PIL import Image
from diffusers import AutoPipelineForInpainting
from diffusers.utils import load_image, make_image_grid

pipe = AutoPipelineForInpainting.from_pretrained("kandinsky-community/kandinsky-2-1-inpaint", torch_dtype=torch.float16)
pipe.enable_model_cpu_offload()

init_image = load_image("https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/kandinsky/cat.png")
mask = np.zeros((768, 768), dtype=np.float32)
# mask area above cat's head
mask[:250, 250:-250] = 1
prompt = "a hat"

output_image = pipe(prompt=prompt, image=init_image, mask_image=mask).images[0]
mask = Image.fromarray((mask*255).astype('uint8'), 'L')
make_image_grid([init_image, mask, output_image], rows=1, cols=3)
```

</hfoption>
<hfoption id="Kandinsky 2.2">

```py
import torch
import numpy as np
from PIL import Image
from diffusers import AutoPipelineForInpainting
from diffusers.utils import load_image, make_image_grid

pipe = AutoPipelineForInpainting.from_pretrained("kandinsky-community/kandinsky-2-2-decoder-inpaint", torch_dtype=torch.float16)
pipe.enable_model_cpu_offload()

init_image = load_image("https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/kandinsky/cat.png")
mask = np.zeros((768, 768), dtype=np.float32)
# mask area above cat's head
mask[:250, 250:-250] = 1
prompt = "a hat"

output_image = pipe(prompt=prompt, image=original_image, mask_image=mask).images[0]
mask = Image.fromarray((mask*255).astype('uint8'), 'L')
make_image_grid([init_image, mask, output_image], rows=1, cols=3)
```

</hfoption>
</hfoptions>

## Interpolation

Interpolation allows you to explore the latent space between the image and text embeddings which is a cool way to see some of the prior model's intermediate outputs. Load the prior pipeline and two images you'd like to interpolate:

<hfoptions id="interpolate">
<hfoption id="Kandinsky 2.1">

```py
from diffusers import KandinskyPriorPipeline, KandinskyPipeline
from diffusers.utils import load_image, make_image_grid
import torch

prior_pipeline = KandinskyPriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-1-prior", torch_dtype=torch.float16, use_safetensors=True).to("cuda")
img_1 = load_image("https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/kandinsky/cat.png")
img_2 = load_image("https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/kandinsky/starry_night.jpeg")
make_image_grid([img_1.resize((512,512)), img_2.resize((512,512))], rows=1, cols=2)
```

</hfoption>
<hfoption id="Kandinsky 2.2">

```py
from diffusers import KandinskyV22PriorPipeline, KandinskyV22Pipeline
from diffusers.utils import load_image, make_image_grid
import torch

prior_pipeline = KandinskyV22PriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16, use_safetensors=True).to("cuda")
img_1 = load_image("https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/kandinsky/cat.png")
img_2 = load_image("https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/kandinsky/starry_night.jpeg")
make_image_grid([img_1.resize((512,512)), img_2.resize((512,512))], rows=1, cols=2)
```

</hfoption>
</hfoptions>

<div class="flex gap-4">
  <div>
    <img class="rounded-xl" src="https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/kandinsky/cat.png"/>
    <figcaption class="mt-2 text-center text-sm text-gray-500">a cat</figcaption>
  </div>
  <div>
    <img class="rounded-xl" src="https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/kandinsky/starry_night.jpeg"/>
    <figcaption class="mt-2 text-center text-sm text-gray-500">Van Gogh's Starry Night painting</figcaption>
  </div>
</div>

Specify the text or images to interpolate, and set the weights for each text or image. Experiment with the weights to see how they affect the interpolation!

```py
images_texts = ["a cat", img_1, img_2]
weights = [0.3, 0.3, 0.4]
```

Call the `interpolate` function to generate the embeddings, and then pass them to the pipeline to generate the image:

<hfoptions id="interpolate">
<hfoption id="Kandinsky 2.1">

```py
# prompt can be left empty
prompt = ""
prior_out = prior_pipeline.interpolate(images_texts, weights)

pipeline = KandinskyPipeline.from_pretrained("kandinsky-community/kandinsky-2-1", torch_dtype=torch.float16, use_safetensors=True).to("cuda")

image = pipeline(prompt, **prior_out, height=768, width=768).images[0]
image
```

<div class="flex justify-center">
    <img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/kandinsky-docs/starry_cat.png"/>
</div>

</hfoption>
<hfoption id="Kandinsky 2.2">

```py
# prompt can be left empty
prompt = ""
prior_out = prior_pipeline.interpolate(images_texts, weights)

pipeline = KandinskyV22Pipeline.from_pretrained("kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16, use_safetensors=True).to("cuda")

image = pipeline(prompt, **prior_out, height=768, width=768).images[0]
image
```

<div class="flex justify-center">
    <img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/kandinskyv22-interpolate.png"/>
</div>

</hfoption>
</hfoptions>

## ControlNet

<Tip warning={true}>

⚠️ ControlNet is only supported for Kandinsky 2.2!

</Tip>

ControlNet enables conditioning large pretrained diffusion models with additional inputs such as a depth map or edge detection. For example, you can condition Kandinsky 2.2 with a depth map so the model understands and preserves the structure of the depth image.

Let's load an image and extract it's depth map:

```py
from diffusers.utils import load_image

img = load_image(
    "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/kandinskyv22/cat.png"
).resize((768, 768))
img
```

<div class="flex justify-center">
    <img class="rounded-xl" src="https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/kandinskyv22/cat.png"/>
</div>

Then you can use the `depth-estimation` [`~transformers.Pipeline`] from 🤗 Transformers to process the image and retrieve the depth map:

```py
import torch
import numpy as np

from transformers import pipeline

def make_hint(image, depth_estimator):
    image = depth_estimator(image)["depth"]
    image = np.array(image)
    image = image[:, :, None]
    image = np.concatenate([image, image, image], axis=2)
    detected_map = torch.from_numpy(image).float() / 255.0
    hint = detected_map.permute(2, 0, 1)
    return hint

depth_estimator = pipeline("depth-estimation")
hint = make_hint(img, depth_estimator).unsqueeze(0).half().to("cuda")
```

### Text-to-image [[controlnet-text-to-image]]

Load the prior pipeline and the [`KandinskyV22ControlnetPipeline`]:

```py
from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline

prior_pipeline = KandinskyV22PriorPipeline.from_pretrained(
    "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16, use_safetensors=True
).to("cuda")

pipeline = KandinskyV22ControlnetPipeline.from_pretrained(
    "kandinsky-community/kandinsky-2-2-controlnet-depth", torch_dtype=torch.float16
).to("cuda")
```

Generate the image embeddings from a prompt and negative prompt:

```py
prompt = "A robot, 4k photo"
negative_prior_prompt = "lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature"

generator = torch.Generator(device="cuda").manual_seed(43)

image_emb, zero_image_emb = prior_pipeline(
    prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator
).to_tuple()
```

Finally, pass the image embeddings and the depth image to the [`KandinskyV22ControlnetPipeline`] to generate an image:

```py
image = pipeline(image_embeds=image_emb, negative_image_embeds=zero_image_emb, hint=hint, num_inference_steps=50, generator=generator, height=768, width=768).images[0]
image
```

<div class="flex justify-center">
    <img class="rounded-xl" src="https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/kandinskyv22/robot_cat_text2img.png"/>
</div>

### Image-to-image [[controlnet-image-to-image]]

For image-to-image with ControlNet, you'll need to use the:

- [`KandinskyV22PriorEmb2EmbPipeline`] to generate the image embeddings from a text prompt and an image
- [`KandinskyV22ControlnetImg2ImgPipeline`] to generate an image from the initial image and the image embeddings

Process and extract a depth map of an initial image of a cat with the `depth-estimation` [`~transformers.Pipeline`] from 🤗 Transformers:

```py
import torch
import numpy as np

from diffusers import KandinskyV22PriorEmb2EmbPipeline, KandinskyV22ControlnetImg2ImgPipeline
from diffusers.utils import load_image
from transformers import pipeline

img = load_image(
    "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/kandinskyv22/cat.png"
).resize((768, 768))

def make_hint(image, depth_estimator):
    image = depth_estimator(image)["depth"]
    image = np.array(image)
    image = image[:, :, None]
    image = np.concatenate([image, image, image], axis=2)
    detected_map = torch.from_numpy(image).float() / 255.0
    hint = detected_map.permute(2, 0, 1)
    return hint

depth_estimator = pipeline("depth-estimation")
hint = make_hint(img, depth_estimator).unsqueeze(0).half().to("cuda")
```

Load the prior pipeline and the [`KandinskyV22ControlnetImg2ImgPipeline`]:

```py
prior_pipeline = KandinskyV22PriorEmb2EmbPipeline.from_pretrained(
    "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16, use_safetensors=True
).to("cuda")

pipeline = KandinskyV22ControlnetImg2ImgPipeline.from_pretrained(
    "kandinsky-community/kandinsky-2-2-controlnet-depth", torch_dtype=torch.float16
).to("cuda")
```

Pass a text prompt and the initial image to the prior pipeline to generate the image embeddings:

```py
prompt = "A robot, 4k photo"
negative_prior_prompt = "lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature"

generator = torch.Generator(device="cuda").manual_seed(43)

img_emb = prior_pipeline(prompt=prompt, image=img, strength=0.85, generator=generator)
negative_emb = prior_pipeline(prompt=negative_prior_prompt, image=img, strength=1, generator=generator)
```

Now you can run the [`KandinskyV22ControlnetImg2ImgPipeline`] to generate an image from the initial image and the image embeddings:

```py
image = pipeline(image=img, strength=0.5, image_embeds=img_emb.image_embeds, negative_image_embeds=negative_emb.image_embeds, hint=hint, num_inference_steps=50, generator=generator, height=768, width=768).images[0]
make_image_grid([img.resize((512, 512)), image.resize((512, 512))], rows=1, cols=2)
```

<div class="flex justify-center">
    <img class="rounded-xl" src="https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/kandinskyv22/robot_cat.png"/>
</div>

## Optimizations

Kandinsky is unique because it requires a prior pipeline to generate the mappings, and a second pipeline to decode the latents into an image. Optimization efforts should be focused on the second pipeline because that is where the bulk of the computation is done. Here are some tips to improve Kandinsky during inference.

1. Enable [xFormers](../optimization/xformers) if you're using PyTorch < 2.0:

```diff
  from diffusers import DiffusionPipeline
  import torch

  pipe = DiffusionPipeline.from_pretrained("kandinsky-community/kandinsky-2-1", torch_dtype=torch.float16)
+ pipe.enable_xformers_memory_efficient_attention()
```

2. Enable `torch.compile` if you're using PyTorch >= 2.0 to automatically use scaled dot-product attention (SDPA):

```diff
  pipe.unet.to(memory_format=torch.channels_last)
+ pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
```

This is the same as explicitly setting the attention processor to use [`~models.attention_processor.AttnAddedKVProcessor2_0`]:

```py
from diffusers.models.attention_processor import AttnAddedKVProcessor2_0

pipe.unet.set_attn_processor(AttnAddedKVProcessor2_0())
```

3. Offload the model to the CPU with [`~KandinskyPriorPipeline.enable_model_cpu_offload`] to avoid out-of-memory errors:

```diff
  from diffusers import DiffusionPipeline
  import torch

  pipe = DiffusionPipeline.from_pretrained("kandinsky-community/kandinsky-2-1", torch_dtype=torch.float16)
+ pipe.enable_model_cpu_offload()
```

4. By default, the text-to-image pipeline uses the [`DDIMScheduler`] but you can replace it with another scheduler like [`DDPMScheduler`] to see how that affects the tradeoff between inference speed and image quality:

```py
from diffusers import DDPMScheduler
from diffusers import DiffusionPipeline

scheduler = DDPMScheduler.from_pretrained("kandinsky-community/kandinsky-2-1", subfolder="ddpm_scheduler")
pipe = DiffusionPipeline.from_pretrained("kandinsky-community/kandinsky-2-1", scheduler=scheduler, torch_dtype=torch.float16, use_safetensors=True).to("cuda")
```