File size: 12,902 Bytes
3a25a0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
import argparse

import torch

from diffusers import HunyuanDiT2DModel


def main(args):
    state_dict = torch.load(args.pt_checkpoint_path, map_location="cpu")

    if args.load_key != "none":
        try:
            state_dict = state_dict[args.load_key]
        except KeyError:
            raise KeyError(
                f"{args.load_key} not found in the checkpoint."
                f"Please load from the following keys:{state_dict.keys()}"
            )

    device = "cuda"
    model_config = HunyuanDiT2DModel.load_config("Tencent-Hunyuan/HunyuanDiT-Diffusers", subfolder="transformer")
    model_config[
        "use_style_cond_and_image_meta_size"
    ] = args.use_style_cond_and_image_meta_size  ### version <= v1.1: True; version >= v1.2: False

    # input_size -> sample_size, text_dim -> cross_attention_dim
    for key in state_dict:
        print("local:", key)

    model = HunyuanDiT2DModel.from_config(model_config).to(device)

    for key in model.state_dict():
        print("diffusers:", key)

    num_layers = 40
    for i in range(num_layers):
        # attn1
        # Wkqv -> to_q, to_k, to_v
        q, k, v = torch.chunk(state_dict[f"blocks.{i}.attn1.Wqkv.weight"], 3, dim=0)
        q_bias, k_bias, v_bias = torch.chunk(state_dict[f"blocks.{i}.attn1.Wqkv.bias"], 3, dim=0)
        state_dict[f"blocks.{i}.attn1.to_q.weight"] = q
        state_dict[f"blocks.{i}.attn1.to_q.bias"] = q_bias
        state_dict[f"blocks.{i}.attn1.to_k.weight"] = k
        state_dict[f"blocks.{i}.attn1.to_k.bias"] = k_bias
        state_dict[f"blocks.{i}.attn1.to_v.weight"] = v
        state_dict[f"blocks.{i}.attn1.to_v.bias"] = v_bias
        state_dict.pop(f"blocks.{i}.attn1.Wqkv.weight")
        state_dict.pop(f"blocks.{i}.attn1.Wqkv.bias")

        # q_norm, k_norm -> norm_q, norm_k
        state_dict[f"blocks.{i}.attn1.norm_q.weight"] = state_dict[f"blocks.{i}.attn1.q_norm.weight"]
        state_dict[f"blocks.{i}.attn1.norm_q.bias"] = state_dict[f"blocks.{i}.attn1.q_norm.bias"]
        state_dict[f"blocks.{i}.attn1.norm_k.weight"] = state_dict[f"blocks.{i}.attn1.k_norm.weight"]
        state_dict[f"blocks.{i}.attn1.norm_k.bias"] = state_dict[f"blocks.{i}.attn1.k_norm.bias"]

        state_dict.pop(f"blocks.{i}.attn1.q_norm.weight")
        state_dict.pop(f"blocks.{i}.attn1.q_norm.bias")
        state_dict.pop(f"blocks.{i}.attn1.k_norm.weight")
        state_dict.pop(f"blocks.{i}.attn1.k_norm.bias")

        # out_proj -> to_out
        state_dict[f"blocks.{i}.attn1.to_out.0.weight"] = state_dict[f"blocks.{i}.attn1.out_proj.weight"]
        state_dict[f"blocks.{i}.attn1.to_out.0.bias"] = state_dict[f"blocks.{i}.attn1.out_proj.bias"]
        state_dict.pop(f"blocks.{i}.attn1.out_proj.weight")
        state_dict.pop(f"blocks.{i}.attn1.out_proj.bias")

        # attn2
        # kq_proj -> to_k, to_v
        k, v = torch.chunk(state_dict[f"blocks.{i}.attn2.kv_proj.weight"], 2, dim=0)
        k_bias, v_bias = torch.chunk(state_dict[f"blocks.{i}.attn2.kv_proj.bias"], 2, dim=0)
        state_dict[f"blocks.{i}.attn2.to_k.weight"] = k
        state_dict[f"blocks.{i}.attn2.to_k.bias"] = k_bias
        state_dict[f"blocks.{i}.attn2.to_v.weight"] = v
        state_dict[f"blocks.{i}.attn2.to_v.bias"] = v_bias
        state_dict.pop(f"blocks.{i}.attn2.kv_proj.weight")
        state_dict.pop(f"blocks.{i}.attn2.kv_proj.bias")

        # q_proj -> to_q
        state_dict[f"blocks.{i}.attn2.to_q.weight"] = state_dict[f"blocks.{i}.attn2.q_proj.weight"]
        state_dict[f"blocks.{i}.attn2.to_q.bias"] = state_dict[f"blocks.{i}.attn2.q_proj.bias"]
        state_dict.pop(f"blocks.{i}.attn2.q_proj.weight")
        state_dict.pop(f"blocks.{i}.attn2.q_proj.bias")

        # q_norm, k_norm -> norm_q, norm_k
        state_dict[f"blocks.{i}.attn2.norm_q.weight"] = state_dict[f"blocks.{i}.attn2.q_norm.weight"]
        state_dict[f"blocks.{i}.attn2.norm_q.bias"] = state_dict[f"blocks.{i}.attn2.q_norm.bias"]
        state_dict[f"blocks.{i}.attn2.norm_k.weight"] = state_dict[f"blocks.{i}.attn2.k_norm.weight"]
        state_dict[f"blocks.{i}.attn2.norm_k.bias"] = state_dict[f"blocks.{i}.attn2.k_norm.bias"]

        state_dict.pop(f"blocks.{i}.attn2.q_norm.weight")
        state_dict.pop(f"blocks.{i}.attn2.q_norm.bias")
        state_dict.pop(f"blocks.{i}.attn2.k_norm.weight")
        state_dict.pop(f"blocks.{i}.attn2.k_norm.bias")

        # out_proj -> to_out
        state_dict[f"blocks.{i}.attn2.to_out.0.weight"] = state_dict[f"blocks.{i}.attn2.out_proj.weight"]
        state_dict[f"blocks.{i}.attn2.to_out.0.bias"] = state_dict[f"blocks.{i}.attn2.out_proj.bias"]
        state_dict.pop(f"blocks.{i}.attn2.out_proj.weight")
        state_dict.pop(f"blocks.{i}.attn2.out_proj.bias")

        # switch norm 2 and norm 3
        norm2_weight = state_dict[f"blocks.{i}.norm2.weight"]
        norm2_bias = state_dict[f"blocks.{i}.norm2.bias"]
        state_dict[f"blocks.{i}.norm2.weight"] = state_dict[f"blocks.{i}.norm3.weight"]
        state_dict[f"blocks.{i}.norm2.bias"] = state_dict[f"blocks.{i}.norm3.bias"]
        state_dict[f"blocks.{i}.norm3.weight"] = norm2_weight
        state_dict[f"blocks.{i}.norm3.bias"] = norm2_bias

        # norm1 -> norm1.norm
        # default_modulation.1 -> norm1.linear
        state_dict[f"blocks.{i}.norm1.norm.weight"] = state_dict[f"blocks.{i}.norm1.weight"]
        state_dict[f"blocks.{i}.norm1.norm.bias"] = state_dict[f"blocks.{i}.norm1.bias"]
        state_dict[f"blocks.{i}.norm1.linear.weight"] = state_dict[f"blocks.{i}.default_modulation.1.weight"]
        state_dict[f"blocks.{i}.norm1.linear.bias"] = state_dict[f"blocks.{i}.default_modulation.1.bias"]
        state_dict.pop(f"blocks.{i}.norm1.weight")
        state_dict.pop(f"blocks.{i}.norm1.bias")
        state_dict.pop(f"blocks.{i}.default_modulation.1.weight")
        state_dict.pop(f"blocks.{i}.default_modulation.1.bias")

        # mlp.fc1 -> ff.net.0, mlp.fc2 -> ff.net.2
        state_dict[f"blocks.{i}.ff.net.0.proj.weight"] = state_dict[f"blocks.{i}.mlp.fc1.weight"]
        state_dict[f"blocks.{i}.ff.net.0.proj.bias"] = state_dict[f"blocks.{i}.mlp.fc1.bias"]
        state_dict[f"blocks.{i}.ff.net.2.weight"] = state_dict[f"blocks.{i}.mlp.fc2.weight"]
        state_dict[f"blocks.{i}.ff.net.2.bias"] = state_dict[f"blocks.{i}.mlp.fc2.bias"]
        state_dict.pop(f"blocks.{i}.mlp.fc1.weight")
        state_dict.pop(f"blocks.{i}.mlp.fc1.bias")
        state_dict.pop(f"blocks.{i}.mlp.fc2.weight")
        state_dict.pop(f"blocks.{i}.mlp.fc2.bias")

    # pooler -> time_extra_emb
    state_dict["time_extra_emb.pooler.positional_embedding"] = state_dict["pooler.positional_embedding"]
    state_dict["time_extra_emb.pooler.k_proj.weight"] = state_dict["pooler.k_proj.weight"]
    state_dict["time_extra_emb.pooler.k_proj.bias"] = state_dict["pooler.k_proj.bias"]
    state_dict["time_extra_emb.pooler.q_proj.weight"] = state_dict["pooler.q_proj.weight"]
    state_dict["time_extra_emb.pooler.q_proj.bias"] = state_dict["pooler.q_proj.bias"]
    state_dict["time_extra_emb.pooler.v_proj.weight"] = state_dict["pooler.v_proj.weight"]
    state_dict["time_extra_emb.pooler.v_proj.bias"] = state_dict["pooler.v_proj.bias"]
    state_dict["time_extra_emb.pooler.c_proj.weight"] = state_dict["pooler.c_proj.weight"]
    state_dict["time_extra_emb.pooler.c_proj.bias"] = state_dict["pooler.c_proj.bias"]
    state_dict.pop("pooler.k_proj.weight")
    state_dict.pop("pooler.k_proj.bias")
    state_dict.pop("pooler.q_proj.weight")
    state_dict.pop("pooler.q_proj.bias")
    state_dict.pop("pooler.v_proj.weight")
    state_dict.pop("pooler.v_proj.bias")
    state_dict.pop("pooler.c_proj.weight")
    state_dict.pop("pooler.c_proj.bias")
    state_dict.pop("pooler.positional_embedding")

    # t_embedder -> time_embedding (`TimestepEmbedding`)
    state_dict["time_extra_emb.timestep_embedder.linear_1.bias"] = state_dict["t_embedder.mlp.0.bias"]
    state_dict["time_extra_emb.timestep_embedder.linear_1.weight"] = state_dict["t_embedder.mlp.0.weight"]
    state_dict["time_extra_emb.timestep_embedder.linear_2.bias"] = state_dict["t_embedder.mlp.2.bias"]
    state_dict["time_extra_emb.timestep_embedder.linear_2.weight"] = state_dict["t_embedder.mlp.2.weight"]

    state_dict.pop("t_embedder.mlp.0.bias")
    state_dict.pop("t_embedder.mlp.0.weight")
    state_dict.pop("t_embedder.mlp.2.bias")
    state_dict.pop("t_embedder.mlp.2.weight")

    # x_embedder -> pos_embd (`PatchEmbed`)
    state_dict["pos_embed.proj.weight"] = state_dict["x_embedder.proj.weight"]
    state_dict["pos_embed.proj.bias"] = state_dict["x_embedder.proj.bias"]
    state_dict.pop("x_embedder.proj.weight")
    state_dict.pop("x_embedder.proj.bias")

    # mlp_t5 -> text_embedder
    state_dict["text_embedder.linear_1.bias"] = state_dict["mlp_t5.0.bias"]
    state_dict["text_embedder.linear_1.weight"] = state_dict["mlp_t5.0.weight"]
    state_dict["text_embedder.linear_2.bias"] = state_dict["mlp_t5.2.bias"]
    state_dict["text_embedder.linear_2.weight"] = state_dict["mlp_t5.2.weight"]
    state_dict.pop("mlp_t5.0.bias")
    state_dict.pop("mlp_t5.0.weight")
    state_dict.pop("mlp_t5.2.bias")
    state_dict.pop("mlp_t5.2.weight")

    # extra_embedder -> extra_embedder
    state_dict["time_extra_emb.extra_embedder.linear_1.bias"] = state_dict["extra_embedder.0.bias"]
    state_dict["time_extra_emb.extra_embedder.linear_1.weight"] = state_dict["extra_embedder.0.weight"]
    state_dict["time_extra_emb.extra_embedder.linear_2.bias"] = state_dict["extra_embedder.2.bias"]
    state_dict["time_extra_emb.extra_embedder.linear_2.weight"] = state_dict["extra_embedder.2.weight"]
    state_dict.pop("extra_embedder.0.bias")
    state_dict.pop("extra_embedder.0.weight")
    state_dict.pop("extra_embedder.2.bias")
    state_dict.pop("extra_embedder.2.weight")

    # model.final_adaLN_modulation.1 -> norm_out.linear
    def swap_scale_shift(weight):
        shift, scale = weight.chunk(2, dim=0)
        new_weight = torch.cat([scale, shift], dim=0)
        return new_weight

    state_dict["norm_out.linear.weight"] = swap_scale_shift(state_dict["final_layer.adaLN_modulation.1.weight"])
    state_dict["norm_out.linear.bias"] = swap_scale_shift(state_dict["final_layer.adaLN_modulation.1.bias"])
    state_dict.pop("final_layer.adaLN_modulation.1.weight")
    state_dict.pop("final_layer.adaLN_modulation.1.bias")

    # final_linear -> proj_out
    state_dict["proj_out.weight"] = state_dict["final_layer.linear.weight"]
    state_dict["proj_out.bias"] = state_dict["final_layer.linear.bias"]
    state_dict.pop("final_layer.linear.weight")
    state_dict.pop("final_layer.linear.bias")

    # style_embedder
    if model_config["use_style_cond_and_image_meta_size"]:
        print(state_dict["style_embedder.weight"])
        print(state_dict["style_embedder.weight"].shape)
        state_dict["time_extra_emb.style_embedder.weight"] = state_dict["style_embedder.weight"][0:1]
        state_dict.pop("style_embedder.weight")

    model.load_state_dict(state_dict)

    from diffusers import HunyuanDiTPipeline

    if args.use_style_cond_and_image_meta_size:
        pipe = HunyuanDiTPipeline.from_pretrained(
            "Tencent-Hunyuan/HunyuanDiT-Diffusers", transformer=model, torch_dtype=torch.float32
        )
    else:
        pipe = HunyuanDiTPipeline.from_pretrained(
            "Tencent-Hunyuan/HunyuanDiT-v1.2-Diffusers", transformer=model, torch_dtype=torch.float32
        )
    pipe.to("cuda")
    pipe.to(dtype=torch.float32)

    if args.save:
        pipe.save_pretrained(args.output_checkpoint_path)

    # ### NOTE: HunyuanDiT supports both Chinese and English inputs
    prompt = "一个宇航员在骑马"
    # prompt = "An astronaut riding a horse"
    generator = torch.Generator(device="cuda").manual_seed(0)
    image = pipe(
        height=1024, width=1024, prompt=prompt, generator=generator, num_inference_steps=25, guidance_scale=5.0
    ).images[0]

    image.save("img.png")


if __name__ == "__main__":
    parser = argparse.ArgumentParser()

    parser.add_argument(
        "--save", default=True, type=bool, required=False, help="Whether to save the converted pipeline or not."
    )
    parser.add_argument(
        "--pt_checkpoint_path", default=None, type=str, required=True, help="Path to the .pt pretrained model."
    )
    parser.add_argument(
        "--output_checkpoint_path",
        default=None,
        type=str,
        required=False,
        help="Path to the output converted diffusers pipeline.",
    )
    parser.add_argument(
        "--load_key", default="none", type=str, required=False, help="The key to load from the pretrained .pt file"
    )
    parser.add_argument(
        "--use_style_cond_and_image_meta_size",
        type=bool,
        default=False,
        help="version <= v1.1: True; version >= v1.2: False",
    )

    args = parser.parse_args()
    main(args)