File size: 22,481 Bytes
3a25a0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Conversion script for the LDM checkpoints."""

import argparse

import torch
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection

from diffusers import DDIMScheduler, I2VGenXLPipeline, I2VGenXLUNet, StableDiffusionPipeline


CLIP_ID = "laion/CLIP-ViT-H-14-laion2B-s32B-b79K"


def assign_to_checkpoint(
    paths, checkpoint, old_checkpoint, attention_paths_to_split=None, additional_replacements=None, config=None
):
    """
    This does the final conversion step: take locally converted weights and apply a global renaming to them. It splits
    attention layers, and takes into account additional replacements that may arise.

    Assigns the weights to the new checkpoint.
    """
    assert isinstance(paths, list), "Paths should be a list of dicts containing 'old' and 'new' keys."

    # Splits the attention layers into three variables.
    if attention_paths_to_split is not None:
        for path, path_map in attention_paths_to_split.items():
            old_tensor = old_checkpoint[path]
            channels = old_tensor.shape[0] // 3

            target_shape = (-1, channels) if len(old_tensor.shape) == 3 else (-1)

            num_heads = old_tensor.shape[0] // config["num_head_channels"] // 3

            old_tensor = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:])
            query, key, value = old_tensor.split(channels // num_heads, dim=1)

            checkpoint[path_map["query"]] = query.reshape(target_shape)
            checkpoint[path_map["key"]] = key.reshape(target_shape)
            checkpoint[path_map["value"]] = value.reshape(target_shape)

    for path in paths:
        new_path = path["new"]

        # These have already been assigned
        if attention_paths_to_split is not None and new_path in attention_paths_to_split:
            continue

        if additional_replacements is not None:
            for replacement in additional_replacements:
                new_path = new_path.replace(replacement["old"], replacement["new"])

        # proj_attn.weight has to be converted from conv 1D to linear
        weight = old_checkpoint[path["old"]]
        names = ["proj_attn.weight"]
        names_2 = ["proj_out.weight", "proj_in.weight"]
        if any(k in new_path for k in names):
            checkpoint[new_path] = weight[:, :, 0]
        elif any(k in new_path for k in names_2) and len(weight.shape) > 2 and ".attentions." not in new_path:
            checkpoint[new_path] = weight[:, :, 0]
        else:
            checkpoint[new_path] = weight


def renew_attention_paths(old_list, n_shave_prefix_segments=0):
    """
    Updates paths inside attentions to the new naming scheme (local renaming)
    """
    mapping = []
    for old_item in old_list:
        new_item = old_item
        mapping.append({"old": old_item, "new": new_item})

    return mapping


def shave_segments(path, n_shave_prefix_segments=1):
    """
    Removes segments. Positive values shave the first segments, negative shave the last segments.
    """
    if n_shave_prefix_segments >= 0:
        return ".".join(path.split(".")[n_shave_prefix_segments:])
    else:
        return ".".join(path.split(".")[:n_shave_prefix_segments])


def renew_temp_conv_paths(old_list, n_shave_prefix_segments=0):
    """
    Updates paths inside resnets to the new naming scheme (local renaming)
    """
    mapping = []
    for old_item in old_list:
        mapping.append({"old": old_item, "new": old_item})

    return mapping


def renew_resnet_paths(old_list, n_shave_prefix_segments=0):
    """
    Updates paths inside resnets to the new naming scheme (local renaming)
    """
    mapping = []
    for old_item in old_list:
        new_item = old_item.replace("in_layers.0", "norm1")
        new_item = new_item.replace("in_layers.2", "conv1")

        new_item = new_item.replace("out_layers.0", "norm2")
        new_item = new_item.replace("out_layers.3", "conv2")

        new_item = new_item.replace("emb_layers.1", "time_emb_proj")
        new_item = new_item.replace("skip_connection", "conv_shortcut")

        new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)

        if "temopral_conv" not in old_item:
            mapping.append({"old": old_item, "new": new_item})

    return mapping


def convert_ldm_unet_checkpoint(checkpoint, config, path=None, extract_ema=False):
    """
    Takes a state dict and a config, and returns a converted checkpoint.
    """

    # extract state_dict for UNet
    unet_state_dict = {}
    keys = list(checkpoint.keys())

    unet_key = "model.diffusion_model."

    # at least a 100 parameters have to start with `model_ema` in order for the checkpoint to be EMA
    if sum(k.startswith("model_ema") for k in keys) > 100 and extract_ema:
        print(f"Checkpoint {path} has both EMA and non-EMA weights.")
        print(
            "In this conversion only the EMA weights are extracted. If you want to instead extract the non-EMA"
            " weights (useful to continue fine-tuning), please make sure to remove the `--extract_ema` flag."
        )
        for key in keys:
            if key.startswith("model.diffusion_model"):
                flat_ema_key = "model_ema." + "".join(key.split(".")[1:])
                unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(flat_ema_key)
    else:
        if sum(k.startswith("model_ema") for k in keys) > 100:
            print(
                "In this conversion only the non-EMA weights are extracted. If you want to instead extract the EMA"
                " weights (usually better for inference), please make sure to add the `--extract_ema` flag."
            )

        for key in keys:
            unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(key)

    new_checkpoint = {}

    new_checkpoint["time_embedding.linear_1.weight"] = unet_state_dict["time_embed.0.weight"]
    new_checkpoint["time_embedding.linear_1.bias"] = unet_state_dict["time_embed.0.bias"]
    new_checkpoint["time_embedding.linear_2.weight"] = unet_state_dict["time_embed.2.weight"]
    new_checkpoint["time_embedding.linear_2.bias"] = unet_state_dict["time_embed.2.bias"]

    additional_embedding_substrings = [
        "local_image_concat",
        "context_embedding",
        "local_image_embedding",
        "fps_embedding",
    ]
    for k in unet_state_dict:
        if any(substring in k for substring in additional_embedding_substrings):
            diffusers_key = k.replace("local_image_concat", "image_latents_proj_in").replace(
                "local_image_embedding", "image_latents_context_embedding"
            )
            new_checkpoint[diffusers_key] = unet_state_dict[k]

    # temporal encoder.
    new_checkpoint["image_latents_temporal_encoder.norm1.weight"] = unet_state_dict[
        "local_temporal_encoder.layers.0.0.norm.weight"
    ]
    new_checkpoint["image_latents_temporal_encoder.norm1.bias"] = unet_state_dict[
        "local_temporal_encoder.layers.0.0.norm.bias"
    ]

    # attention
    qkv = unet_state_dict["local_temporal_encoder.layers.0.0.fn.to_qkv.weight"]
    q, k, v = torch.chunk(qkv, 3, dim=0)
    new_checkpoint["image_latents_temporal_encoder.attn1.to_q.weight"] = q
    new_checkpoint["image_latents_temporal_encoder.attn1.to_k.weight"] = k
    new_checkpoint["image_latents_temporal_encoder.attn1.to_v.weight"] = v
    new_checkpoint["image_latents_temporal_encoder.attn1.to_out.0.weight"] = unet_state_dict[
        "local_temporal_encoder.layers.0.0.fn.to_out.0.weight"
    ]
    new_checkpoint["image_latents_temporal_encoder.attn1.to_out.0.bias"] = unet_state_dict[
        "local_temporal_encoder.layers.0.0.fn.to_out.0.bias"
    ]

    # feedforward
    new_checkpoint["image_latents_temporal_encoder.ff.net.0.proj.weight"] = unet_state_dict[
        "local_temporal_encoder.layers.0.1.net.0.0.weight"
    ]
    new_checkpoint["image_latents_temporal_encoder.ff.net.0.proj.bias"] = unet_state_dict[
        "local_temporal_encoder.layers.0.1.net.0.0.bias"
    ]
    new_checkpoint["image_latents_temporal_encoder.ff.net.2.weight"] = unet_state_dict[
        "local_temporal_encoder.layers.0.1.net.2.weight"
    ]
    new_checkpoint["image_latents_temporal_encoder.ff.net.2.bias"] = unet_state_dict[
        "local_temporal_encoder.layers.0.1.net.2.bias"
    ]

    if "class_embed_type" in config:
        if config["class_embed_type"] is None:
            # No parameters to port
            ...
        elif config["class_embed_type"] == "timestep" or config["class_embed_type"] == "projection":
            new_checkpoint["class_embedding.linear_1.weight"] = unet_state_dict["label_emb.0.0.weight"]
            new_checkpoint["class_embedding.linear_1.bias"] = unet_state_dict["label_emb.0.0.bias"]
            new_checkpoint["class_embedding.linear_2.weight"] = unet_state_dict["label_emb.0.2.weight"]
            new_checkpoint["class_embedding.linear_2.bias"] = unet_state_dict["label_emb.0.2.bias"]
        else:
            raise NotImplementedError(f"Not implemented `class_embed_type`: {config['class_embed_type']}")

    new_checkpoint["conv_in.weight"] = unet_state_dict["input_blocks.0.0.weight"]
    new_checkpoint["conv_in.bias"] = unet_state_dict["input_blocks.0.0.bias"]

    first_temp_attention = [v for v in unet_state_dict if v.startswith("input_blocks.0.1")]
    paths = renew_attention_paths(first_temp_attention)
    meta_path = {"old": "input_blocks.0.1", "new": "transformer_in"}
    assign_to_checkpoint(paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config)

    new_checkpoint["conv_norm_out.weight"] = unet_state_dict["out.0.weight"]
    new_checkpoint["conv_norm_out.bias"] = unet_state_dict["out.0.bias"]
    new_checkpoint["conv_out.weight"] = unet_state_dict["out.2.weight"]
    new_checkpoint["conv_out.bias"] = unet_state_dict["out.2.bias"]

    # Retrieves the keys for the input blocks only
    num_input_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "input_blocks" in layer})
    input_blocks = {
        layer_id: [key for key in unet_state_dict if f"input_blocks.{layer_id}" in key]
        for layer_id in range(num_input_blocks)
    }

    # Retrieves the keys for the middle blocks only
    num_middle_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "middle_block" in layer})
    middle_blocks = {
        layer_id: [key for key in unet_state_dict if f"middle_block.{layer_id}" in key]
        for layer_id in range(num_middle_blocks)
    }

    # Retrieves the keys for the output blocks only
    num_output_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "output_blocks" in layer})
    output_blocks = {
        layer_id: [key for key in unet_state_dict if f"output_blocks.{layer_id}" in key]
        for layer_id in range(num_output_blocks)
    }

    for i in range(1, num_input_blocks):
        block_id = (i - 1) // (config["layers_per_block"] + 1)
        layer_in_block_id = (i - 1) % (config["layers_per_block"] + 1)

        resnets = [
            key for key in input_blocks[i] if f"input_blocks.{i}.0" in key and f"input_blocks.{i}.0.op" not in key
        ]
        attentions = [key for key in input_blocks[i] if f"input_blocks.{i}.1" in key]
        temp_attentions = [key for key in input_blocks[i] if f"input_blocks.{i}.2" in key]

        if f"input_blocks.{i}.op.weight" in unet_state_dict:
            new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.weight"] = unet_state_dict.pop(
                f"input_blocks.{i}.op.weight"
            )
            new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.bias"] = unet_state_dict.pop(
                f"input_blocks.{i}.op.bias"
            )

        paths = renew_resnet_paths(resnets)
        meta_path = {"old": f"input_blocks.{i}.0", "new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}"}
        assign_to_checkpoint(
            paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
        )

        temporal_convs = [key for key in resnets if "temopral_conv" in key]
        paths = renew_temp_conv_paths(temporal_convs)
        meta_path = {
            "old": f"input_blocks.{i}.0.temopral_conv",
            "new": f"down_blocks.{block_id}.temp_convs.{layer_in_block_id}",
        }
        assign_to_checkpoint(
            paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
        )

        if len(attentions):
            paths = renew_attention_paths(attentions)
            meta_path = {"old": f"input_blocks.{i}.1", "new": f"down_blocks.{block_id}.attentions.{layer_in_block_id}"}
            assign_to_checkpoint(
                paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
            )

        if len(temp_attentions):
            paths = renew_attention_paths(temp_attentions)
            meta_path = {
                "old": f"input_blocks.{i}.2",
                "new": f"down_blocks.{block_id}.temp_attentions.{layer_in_block_id}",
            }
            assign_to_checkpoint(
                paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
            )

    resnet_0 = middle_blocks[0]
    temporal_convs_0 = [key for key in resnet_0 if "temopral_conv" in key]
    attentions = middle_blocks[1]
    temp_attentions = middle_blocks[2]
    resnet_1 = middle_blocks[3]
    temporal_convs_1 = [key for key in resnet_1 if "temopral_conv" in key]

    resnet_0_paths = renew_resnet_paths(resnet_0)
    meta_path = {"old": "middle_block.0", "new": "mid_block.resnets.0"}
    assign_to_checkpoint(
        resnet_0_paths, new_checkpoint, unet_state_dict, config=config, additional_replacements=[meta_path]
    )

    temp_conv_0_paths = renew_temp_conv_paths(temporal_convs_0)
    meta_path = {"old": "middle_block.0.temopral_conv", "new": "mid_block.temp_convs.0"}
    assign_to_checkpoint(
        temp_conv_0_paths, new_checkpoint, unet_state_dict, config=config, additional_replacements=[meta_path]
    )

    resnet_1_paths = renew_resnet_paths(resnet_1)
    meta_path = {"old": "middle_block.3", "new": "mid_block.resnets.1"}
    assign_to_checkpoint(
        resnet_1_paths, new_checkpoint, unet_state_dict, config=config, additional_replacements=[meta_path]
    )

    temp_conv_1_paths = renew_temp_conv_paths(temporal_convs_1)
    meta_path = {"old": "middle_block.3.temopral_conv", "new": "mid_block.temp_convs.1"}
    assign_to_checkpoint(
        temp_conv_1_paths, new_checkpoint, unet_state_dict, config=config, additional_replacements=[meta_path]
    )

    attentions_paths = renew_attention_paths(attentions)
    meta_path = {"old": "middle_block.1", "new": "mid_block.attentions.0"}
    assign_to_checkpoint(
        attentions_paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
    )

    temp_attentions_paths = renew_attention_paths(temp_attentions)
    meta_path = {"old": "middle_block.2", "new": "mid_block.temp_attentions.0"}
    assign_to_checkpoint(
        temp_attentions_paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
    )

    for i in range(num_output_blocks):
        block_id = i // (config["layers_per_block"] + 1)
        layer_in_block_id = i % (config["layers_per_block"] + 1)
        output_block_layers = [shave_segments(name, 2) for name in output_blocks[i]]
        output_block_list = {}

        for layer in output_block_layers:
            layer_id, layer_name = layer.split(".")[0], shave_segments(layer, 1)
            if layer_id in output_block_list:
                output_block_list[layer_id].append(layer_name)
            else:
                output_block_list[layer_id] = [layer_name]

        if len(output_block_list) > 1:
            resnets = [key for key in output_blocks[i] if f"output_blocks.{i}.0" in key]
            attentions = [key for key in output_blocks[i] if f"output_blocks.{i}.1" in key]
            temp_attentions = [key for key in output_blocks[i] if f"output_blocks.{i}.2" in key]

            resnet_0_paths = renew_resnet_paths(resnets)
            paths = renew_resnet_paths(resnets)

            meta_path = {"old": f"output_blocks.{i}.0", "new": f"up_blocks.{block_id}.resnets.{layer_in_block_id}"}
            assign_to_checkpoint(
                paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
            )

            temporal_convs = [key for key in resnets if "temopral_conv" in key]
            paths = renew_temp_conv_paths(temporal_convs)
            meta_path = {
                "old": f"output_blocks.{i}.0.temopral_conv",
                "new": f"up_blocks.{block_id}.temp_convs.{layer_in_block_id}",
            }
            assign_to_checkpoint(
                paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
            )

            output_block_list = {k: sorted(v) for k, v in output_block_list.items()}
            if ["conv.bias", "conv.weight"] in output_block_list.values():
                index = list(output_block_list.values()).index(["conv.bias", "conv.weight"])
                new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.weight"] = unet_state_dict[
                    f"output_blocks.{i}.{index}.conv.weight"
                ]
                new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.bias"] = unet_state_dict[
                    f"output_blocks.{i}.{index}.conv.bias"
                ]

                # Clear attentions as they have been attributed above.
                if len(attentions) == 2:
                    attentions = []

            if len(attentions):
                paths = renew_attention_paths(attentions)
                meta_path = {
                    "old": f"output_blocks.{i}.1",
                    "new": f"up_blocks.{block_id}.attentions.{layer_in_block_id}",
                }
                assign_to_checkpoint(
                    paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
                )

            if len(temp_attentions):
                paths = renew_attention_paths(temp_attentions)
                meta_path = {
                    "old": f"output_blocks.{i}.2",
                    "new": f"up_blocks.{block_id}.temp_attentions.{layer_in_block_id}",
                }
                assign_to_checkpoint(
                    paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
                )
        else:
            resnet_0_paths = renew_resnet_paths(output_block_layers, n_shave_prefix_segments=1)
            for path in resnet_0_paths:
                old_path = ".".join(["output_blocks", str(i), path["old"]])
                new_path = ".".join(["up_blocks", str(block_id), "resnets", str(layer_in_block_id), path["new"]])
                new_checkpoint[new_path] = unet_state_dict[old_path]

            temopral_conv_paths = [l for l in output_block_layers if "temopral_conv" in l]
            for path in temopral_conv_paths:
                pruned_path = path.split("temopral_conv.")[-1]
                old_path = ".".join(["output_blocks", str(i), str(block_id), "temopral_conv", pruned_path])
                new_path = ".".join(["up_blocks", str(block_id), "temp_convs", str(layer_in_block_id), pruned_path])
                new_checkpoint[new_path] = unet_state_dict[old_path]

    return new_checkpoint


if __name__ == "__main__":
    parser = argparse.ArgumentParser()

    parser.add_argument(
        "--unet_checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert."
    )
    parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.")
    parser.add_argument("--push_to_hub", action="store_true")
    args = parser.parse_args()

    # UNet
    unet_checkpoint = torch.load(args.unet_checkpoint_path, map_location="cpu")
    unet_checkpoint = unet_checkpoint["state_dict"]
    unet = I2VGenXLUNet(sample_size=32)

    converted_ckpt = convert_ldm_unet_checkpoint(unet_checkpoint, unet.config)

    diff_0 = set(unet.state_dict().keys()) - set(converted_ckpt.keys())
    diff_1 = set(converted_ckpt.keys()) - set(unet.state_dict().keys())

    assert len(diff_0) == len(diff_1) == 0, "Converted weights don't match"

    unet.load_state_dict(converted_ckpt, strict=True)

    # vae
    temp_pipe = StableDiffusionPipeline.from_single_file(
        "https://huggingface.co/ali-vilab/i2vgen-xl/blob/main/models/v2-1_512-ema-pruned.ckpt"
    )
    vae = temp_pipe.vae
    del temp_pipe

    # text encoder and tokenizer
    text_encoder = CLIPTextModel.from_pretrained(CLIP_ID)
    tokenizer = CLIPTokenizer.from_pretrained(CLIP_ID)

    # image encoder and feature extractor
    image_encoder = CLIPVisionModelWithProjection.from_pretrained(CLIP_ID)
    feature_extractor = CLIPImageProcessor.from_pretrained(CLIP_ID)

    # scheduler
    # https://github.com/ali-vilab/i2vgen-xl/blob/main/configs/i2vgen_xl_train.yaml
    scheduler = DDIMScheduler(
        beta_schedule="squaredcos_cap_v2",
        rescale_betas_zero_snr=True,
        set_alpha_to_one=True,
        clip_sample=False,
        steps_offset=1,
        timestep_spacing="leading",
        prediction_type="v_prediction",
    )

    # final
    pipeline = I2VGenXLPipeline(
        unet=unet,
        vae=vae,
        image_encoder=image_encoder,
        feature_extractor=feature_extractor,
        text_encoder=text_encoder,
        tokenizer=tokenizer,
        scheduler=scheduler,
    )

    pipeline.save_pretrained(args.dump_path, push_to_hub=args.push_to_hub)