NadaGh's picture
End of training
3a25a0a verified
raw
history blame
3.27 kB
#!/usr/bin/env python3
import argparse
import fnmatch
from safetensors.torch import load_file
from diffusers import Kandinsky3UNet
MAPPING = {
"to_time_embed.1": "time_embedding.linear_1",
"to_time_embed.3": "time_embedding.linear_2",
"in_layer": "conv_in",
"out_layer.0": "conv_norm_out",
"out_layer.2": "conv_out",
"down_samples": "down_blocks",
"up_samples": "up_blocks",
"projection_lin": "encoder_hid_proj.projection_linear",
"projection_ln": "encoder_hid_proj.projection_norm",
"feature_pooling": "add_time_condition",
"to_query": "to_q",
"to_key": "to_k",
"to_value": "to_v",
"output_layer": "to_out.0",
"self_attention_block": "attentions.0",
}
DYNAMIC_MAP = {
"resnet_attn_blocks.*.0": "resnets_in.*",
"resnet_attn_blocks.*.1": ("attentions.*", 1),
"resnet_attn_blocks.*.2": "resnets_out.*",
}
# MAPPING = {}
def convert_state_dict(unet_state_dict):
"""
Convert the state dict of a U-Net model to match the key format expected by Kandinsky3UNet model.
Args:
unet_model (torch.nn.Module): The original U-Net model.
unet_kandi3_model (torch.nn.Module): The Kandinsky3UNet model to match keys with.
Returns:
OrderedDict: The converted state dictionary.
"""
# Example of renaming logic (this will vary based on your model's architecture)
converted_state_dict = {}
for key in unet_state_dict:
new_key = key
for pattern, new_pattern in MAPPING.items():
new_key = new_key.replace(pattern, new_pattern)
for dyn_pattern, dyn_new_pattern in DYNAMIC_MAP.items():
has_matched = False
if fnmatch.fnmatch(new_key, f"*.{dyn_pattern}.*") and not has_matched:
star = int(new_key.split(dyn_pattern.split(".")[0])[-1].split(".")[1])
if isinstance(dyn_new_pattern, tuple):
new_star = star + dyn_new_pattern[-1]
dyn_new_pattern = dyn_new_pattern[0]
else:
new_star = star
pattern = dyn_pattern.replace("*", str(star))
new_pattern = dyn_new_pattern.replace("*", str(new_star))
new_key = new_key.replace(pattern, new_pattern)
has_matched = True
converted_state_dict[new_key] = unet_state_dict[key]
return converted_state_dict
def main(model_path, output_path):
# Load your original U-Net model
unet_state_dict = load_file(model_path)
# Initialize your Kandinsky3UNet model
config = {}
# Convert the state dict
converted_state_dict = convert_state_dict(unet_state_dict)
unet = Kandinsky3UNet(config)
unet.load_state_dict(converted_state_dict)
unet.save_pretrained(output_path)
print(f"Converted model saved to {output_path}")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Convert U-Net PyTorch model to Kandinsky3UNet format")
parser.add_argument("--model_path", type=str, required=True, help="Path to the original U-Net PyTorch model")
parser.add_argument("--output_path", type=str, required=True, help="Path to save the converted model")
args = parser.parse_args()
main(args.model_path, args.output_path)