stable-diffusion-v1-5-tst_chair / diffusers /scripts /convert_pixart_alpha_to_diffusers.py
NadaGh's picture
End of training
3a25a0a verified
raw
history blame
8.99 kB
import argparse
import os
import torch
from transformers import T5EncoderModel, T5Tokenizer
from diffusers import AutoencoderKL, DPMSolverMultistepScheduler, PixArtAlphaPipeline, Transformer2DModel
ckpt_id = "PixArt-alpha/PixArt-alpha"
# https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/scripts/inference.py#L125
interpolation_scale = {256: 0.5, 512: 1, 1024: 2}
def main(args):
all_state_dict = torch.load(args.orig_ckpt_path, map_location="cpu")
state_dict = all_state_dict.pop("state_dict")
converted_state_dict = {}
# Patch embeddings.
converted_state_dict["pos_embed.proj.weight"] = state_dict.pop("x_embedder.proj.weight")
converted_state_dict["pos_embed.proj.bias"] = state_dict.pop("x_embedder.proj.bias")
# Caption projection.
converted_state_dict["caption_projection.linear_1.weight"] = state_dict.pop("y_embedder.y_proj.fc1.weight")
converted_state_dict["caption_projection.linear_1.bias"] = state_dict.pop("y_embedder.y_proj.fc1.bias")
converted_state_dict["caption_projection.linear_2.weight"] = state_dict.pop("y_embedder.y_proj.fc2.weight")
converted_state_dict["caption_projection.linear_2.bias"] = state_dict.pop("y_embedder.y_proj.fc2.bias")
# AdaLN-single LN
converted_state_dict["adaln_single.emb.timestep_embedder.linear_1.weight"] = state_dict.pop(
"t_embedder.mlp.0.weight"
)
converted_state_dict["adaln_single.emb.timestep_embedder.linear_1.bias"] = state_dict.pop("t_embedder.mlp.0.bias")
converted_state_dict["adaln_single.emb.timestep_embedder.linear_2.weight"] = state_dict.pop(
"t_embedder.mlp.2.weight"
)
converted_state_dict["adaln_single.emb.timestep_embedder.linear_2.bias"] = state_dict.pop("t_embedder.mlp.2.bias")
if args.image_size == 1024:
# Resolution.
converted_state_dict["adaln_single.emb.resolution_embedder.linear_1.weight"] = state_dict.pop(
"csize_embedder.mlp.0.weight"
)
converted_state_dict["adaln_single.emb.resolution_embedder.linear_1.bias"] = state_dict.pop(
"csize_embedder.mlp.0.bias"
)
converted_state_dict["adaln_single.emb.resolution_embedder.linear_2.weight"] = state_dict.pop(
"csize_embedder.mlp.2.weight"
)
converted_state_dict["adaln_single.emb.resolution_embedder.linear_2.bias"] = state_dict.pop(
"csize_embedder.mlp.2.bias"
)
# Aspect ratio.
converted_state_dict["adaln_single.emb.aspect_ratio_embedder.linear_1.weight"] = state_dict.pop(
"ar_embedder.mlp.0.weight"
)
converted_state_dict["adaln_single.emb.aspect_ratio_embedder.linear_1.bias"] = state_dict.pop(
"ar_embedder.mlp.0.bias"
)
converted_state_dict["adaln_single.emb.aspect_ratio_embedder.linear_2.weight"] = state_dict.pop(
"ar_embedder.mlp.2.weight"
)
converted_state_dict["adaln_single.emb.aspect_ratio_embedder.linear_2.bias"] = state_dict.pop(
"ar_embedder.mlp.2.bias"
)
# Shared norm.
converted_state_dict["adaln_single.linear.weight"] = state_dict.pop("t_block.1.weight")
converted_state_dict["adaln_single.linear.bias"] = state_dict.pop("t_block.1.bias")
for depth in range(28):
# Transformer blocks.
converted_state_dict[f"transformer_blocks.{depth}.scale_shift_table"] = state_dict.pop(
f"blocks.{depth}.scale_shift_table"
)
# Attention is all you need 🤘
# Self attention.
q, k, v = torch.chunk(state_dict.pop(f"blocks.{depth}.attn.qkv.weight"), 3, dim=0)
q_bias, k_bias, v_bias = torch.chunk(state_dict.pop(f"blocks.{depth}.attn.qkv.bias"), 3, dim=0)
converted_state_dict[f"transformer_blocks.{depth}.attn1.to_q.weight"] = q
converted_state_dict[f"transformer_blocks.{depth}.attn1.to_q.bias"] = q_bias
converted_state_dict[f"transformer_blocks.{depth}.attn1.to_k.weight"] = k
converted_state_dict[f"transformer_blocks.{depth}.attn1.to_k.bias"] = k_bias
converted_state_dict[f"transformer_blocks.{depth}.attn1.to_v.weight"] = v
converted_state_dict[f"transformer_blocks.{depth}.attn1.to_v.bias"] = v_bias
# Projection.
converted_state_dict[f"transformer_blocks.{depth}.attn1.to_out.0.weight"] = state_dict.pop(
f"blocks.{depth}.attn.proj.weight"
)
converted_state_dict[f"transformer_blocks.{depth}.attn1.to_out.0.bias"] = state_dict.pop(
f"blocks.{depth}.attn.proj.bias"
)
# Feed-forward.
converted_state_dict[f"transformer_blocks.{depth}.ff.net.0.proj.weight"] = state_dict.pop(
f"blocks.{depth}.mlp.fc1.weight"
)
converted_state_dict[f"transformer_blocks.{depth}.ff.net.0.proj.bias"] = state_dict.pop(
f"blocks.{depth}.mlp.fc1.bias"
)
converted_state_dict[f"transformer_blocks.{depth}.ff.net.2.weight"] = state_dict.pop(
f"blocks.{depth}.mlp.fc2.weight"
)
converted_state_dict[f"transformer_blocks.{depth}.ff.net.2.bias"] = state_dict.pop(
f"blocks.{depth}.mlp.fc2.bias"
)
# Cross-attention.
q = state_dict.pop(f"blocks.{depth}.cross_attn.q_linear.weight")
q_bias = state_dict.pop(f"blocks.{depth}.cross_attn.q_linear.bias")
k, v = torch.chunk(state_dict.pop(f"blocks.{depth}.cross_attn.kv_linear.weight"), 2, dim=0)
k_bias, v_bias = torch.chunk(state_dict.pop(f"blocks.{depth}.cross_attn.kv_linear.bias"), 2, dim=0)
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_q.weight"] = q
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_q.bias"] = q_bias
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_k.weight"] = k
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_k.bias"] = k_bias
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_v.weight"] = v
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_v.bias"] = v_bias
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_out.0.weight"] = state_dict.pop(
f"blocks.{depth}.cross_attn.proj.weight"
)
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_out.0.bias"] = state_dict.pop(
f"blocks.{depth}.cross_attn.proj.bias"
)
# Final block.
converted_state_dict["proj_out.weight"] = state_dict.pop("final_layer.linear.weight")
converted_state_dict["proj_out.bias"] = state_dict.pop("final_layer.linear.bias")
converted_state_dict["scale_shift_table"] = state_dict.pop("final_layer.scale_shift_table")
# DiT XL/2
transformer = Transformer2DModel(
sample_size=args.image_size // 8,
num_layers=28,
attention_head_dim=72,
in_channels=4,
out_channels=8,
patch_size=2,
attention_bias=True,
num_attention_heads=16,
cross_attention_dim=1152,
activation_fn="gelu-approximate",
num_embeds_ada_norm=1000,
norm_type="ada_norm_single",
norm_elementwise_affine=False,
norm_eps=1e-6,
caption_channels=4096,
)
transformer.load_state_dict(converted_state_dict, strict=True)
assert transformer.pos_embed.pos_embed is not None
state_dict.pop("pos_embed")
state_dict.pop("y_embedder.y_embedding")
assert len(state_dict) == 0, f"State dict is not empty, {state_dict.keys()}"
num_model_params = sum(p.numel() for p in transformer.parameters())
print(f"Total number of transformer parameters: {num_model_params}")
if args.only_transformer:
transformer.save_pretrained(os.path.join(args.dump_path, "transformer"))
else:
scheduler = DPMSolverMultistepScheduler()
vae = AutoencoderKL.from_pretrained(ckpt_id, subfolder="sd-vae-ft-ema")
tokenizer = T5Tokenizer.from_pretrained(ckpt_id, subfolder="t5-v1_1-xxl")
text_encoder = T5EncoderModel.from_pretrained(ckpt_id, subfolder="t5-v1_1-xxl")
pipeline = PixArtAlphaPipeline(
tokenizer=tokenizer, text_encoder=text_encoder, transformer=transformer, vae=vae, scheduler=scheduler
)
pipeline.save_pretrained(args.dump_path)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--orig_ckpt_path", default=None, type=str, required=False, help="Path to the checkpoint to convert."
)
parser.add_argument(
"--image_size",
default=1024,
type=int,
choices=[256, 512, 1024],
required=False,
help="Image size of pretrained model, either 512 or 1024.",
)
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output pipeline.")
parser.add_argument("--only_transformer", default=True, type=bool, required=True)
args = parser.parse_args()
main(args)