|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gc |
|
import sys |
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
from huggingface_hub import hf_hub_download |
|
from huggingface_hub.repocard import RepoCard |
|
from safetensors.torch import load_file |
|
from transformers import CLIPTextModel, CLIPTokenizer |
|
|
|
from diffusers import ( |
|
AutoPipelineForImage2Image, |
|
AutoPipelineForText2Image, |
|
DDIMScheduler, |
|
DiffusionPipeline, |
|
LCMScheduler, |
|
StableDiffusionPipeline, |
|
) |
|
from diffusers.utils.import_utils import is_accelerate_available |
|
from diffusers.utils.testing_utils import ( |
|
load_image, |
|
numpy_cosine_similarity_distance, |
|
require_peft_backend, |
|
require_torch_gpu, |
|
slow, |
|
torch_device, |
|
) |
|
|
|
|
|
sys.path.append(".") |
|
|
|
from utils import PeftLoraLoaderMixinTests, check_if_lora_correctly_set |
|
|
|
|
|
if is_accelerate_available(): |
|
from accelerate.utils import release_memory |
|
|
|
|
|
class StableDiffusionLoRATests(PeftLoraLoaderMixinTests, unittest.TestCase): |
|
pipeline_class = StableDiffusionPipeline |
|
scheduler_cls = DDIMScheduler |
|
scheduler_kwargs = { |
|
"beta_start": 0.00085, |
|
"beta_end": 0.012, |
|
"beta_schedule": "scaled_linear", |
|
"clip_sample": False, |
|
"set_alpha_to_one": False, |
|
"steps_offset": 1, |
|
} |
|
unet_kwargs = { |
|
"block_out_channels": (32, 64), |
|
"layers_per_block": 2, |
|
"sample_size": 32, |
|
"in_channels": 4, |
|
"out_channels": 4, |
|
"down_block_types": ("DownBlock2D", "CrossAttnDownBlock2D"), |
|
"up_block_types": ("CrossAttnUpBlock2D", "UpBlock2D"), |
|
"cross_attention_dim": 32, |
|
} |
|
vae_kwargs = { |
|
"block_out_channels": [32, 64], |
|
"in_channels": 3, |
|
"out_channels": 3, |
|
"down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], |
|
"up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], |
|
"latent_channels": 4, |
|
} |
|
text_encoder_cls, text_encoder_id = CLIPTextModel, "peft-internal-testing/tiny-clip-text-2" |
|
tokenizer_cls, tokenizer_id = CLIPTokenizer, "peft-internal-testing/tiny-clip-text-2" |
|
|
|
@property |
|
def output_shape(self): |
|
return (1, 64, 64, 3) |
|
|
|
def setUp(self): |
|
super().setUp() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def tearDown(self): |
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
|
|
|
|
@slow |
|
@require_torch_gpu |
|
def test_integration_move_lora_cpu(self): |
|
path = "runwayml/stable-diffusion-v1-5" |
|
lora_id = "takuma104/lora-test-text-encoder-lora-target" |
|
|
|
pipe = StableDiffusionPipeline.from_pretrained(path, torch_dtype=torch.float16) |
|
pipe.load_lora_weights(lora_id, adapter_name="adapter-1") |
|
pipe.load_lora_weights(lora_id, adapter_name="adapter-2") |
|
pipe = pipe.to(torch_device) |
|
|
|
self.assertTrue( |
|
check_if_lora_correctly_set(pipe.text_encoder), |
|
"Lora not correctly set in text encoder", |
|
) |
|
|
|
self.assertTrue( |
|
check_if_lora_correctly_set(pipe.unet), |
|
"Lora not correctly set in text encoder", |
|
) |
|
|
|
|
|
|
|
pipe.set_lora_device(["adapter-1"], "cpu") |
|
|
|
for name, module in pipe.unet.named_modules(): |
|
if "adapter-1" in name and not isinstance(module, (nn.Dropout, nn.Identity)): |
|
self.assertTrue(module.weight.device == torch.device("cpu")) |
|
elif "adapter-2" in name and not isinstance(module, (nn.Dropout, nn.Identity)): |
|
self.assertTrue(module.weight.device != torch.device("cpu")) |
|
|
|
for name, module in pipe.text_encoder.named_modules(): |
|
if "adapter-1" in name and not isinstance(module, (nn.Dropout, nn.Identity)): |
|
self.assertTrue(module.weight.device == torch.device("cpu")) |
|
elif "adapter-2" in name and not isinstance(module, (nn.Dropout, nn.Identity)): |
|
self.assertTrue(module.weight.device != torch.device("cpu")) |
|
|
|
pipe.set_lora_device(["adapter-1"], 0) |
|
|
|
for n, m in pipe.unet.named_modules(): |
|
if "adapter-1" in n and not isinstance(m, (nn.Dropout, nn.Identity)): |
|
self.assertTrue(m.weight.device != torch.device("cpu")) |
|
|
|
for n, m in pipe.text_encoder.named_modules(): |
|
if "adapter-1" in n and not isinstance(m, (nn.Dropout, nn.Identity)): |
|
self.assertTrue(m.weight.device != torch.device("cpu")) |
|
|
|
pipe.set_lora_device(["adapter-1", "adapter-2"], torch_device) |
|
|
|
for n, m in pipe.unet.named_modules(): |
|
if ("adapter-1" in n or "adapter-2" in n) and not isinstance(m, (nn.Dropout, nn.Identity)): |
|
self.assertTrue(m.weight.device != torch.device("cpu")) |
|
|
|
for n, m in pipe.text_encoder.named_modules(): |
|
if ("adapter-1" in n or "adapter-2" in n) and not isinstance(m, (nn.Dropout, nn.Identity)): |
|
self.assertTrue(m.weight.device != torch.device("cpu")) |
|
|
|
@require_torch_gpu |
|
def test_integration_move_lora_dora_cpu(self): |
|
from peft import LoraConfig |
|
|
|
path = "runwayml/stable-diffusion-v1-5" |
|
unet_lora_config = LoraConfig( |
|
init_lora_weights="gaussian", |
|
target_modules=["to_k", "to_q", "to_v", "to_out.0"], |
|
use_dora=True, |
|
) |
|
text_lora_config = LoraConfig( |
|
init_lora_weights="gaussian", |
|
target_modules=["q_proj", "k_proj", "v_proj", "out_proj"], |
|
use_dora=True, |
|
) |
|
|
|
pipe = StableDiffusionPipeline.from_pretrained(path, torch_dtype=torch.float16) |
|
pipe.unet.add_adapter(unet_lora_config, "adapter-1") |
|
pipe.text_encoder.add_adapter(text_lora_config, "adapter-1") |
|
|
|
self.assertTrue( |
|
check_if_lora_correctly_set(pipe.text_encoder), |
|
"Lora not correctly set in text encoder", |
|
) |
|
|
|
self.assertTrue( |
|
check_if_lora_correctly_set(pipe.unet), |
|
"Lora not correctly set in text encoder", |
|
) |
|
|
|
for name, param in pipe.unet.named_parameters(): |
|
if "lora_" in name: |
|
self.assertEqual(param.device, torch.device("cpu")) |
|
|
|
for name, param in pipe.text_encoder.named_parameters(): |
|
if "lora_" in name: |
|
self.assertEqual(param.device, torch.device("cpu")) |
|
|
|
pipe.set_lora_device(["adapter-1"], torch_device) |
|
|
|
for name, param in pipe.unet.named_parameters(): |
|
if "lora_" in name: |
|
self.assertNotEqual(param.device, torch.device("cpu")) |
|
|
|
for name, param in pipe.text_encoder.named_parameters(): |
|
if "lora_" in name: |
|
self.assertNotEqual(param.device, torch.device("cpu")) |
|
|
|
|
|
@slow |
|
@require_torch_gpu |
|
@require_peft_backend |
|
class LoraIntegrationTests(unittest.TestCase): |
|
def setUp(self): |
|
super().setUp() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def tearDown(self): |
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def test_integration_logits_with_scale(self): |
|
path = "runwayml/stable-diffusion-v1-5" |
|
lora_id = "takuma104/lora-test-text-encoder-lora-target" |
|
|
|
pipe = StableDiffusionPipeline.from_pretrained(path, torch_dtype=torch.float32) |
|
pipe.load_lora_weights(lora_id) |
|
pipe = pipe.to(torch_device) |
|
|
|
self.assertTrue( |
|
check_if_lora_correctly_set(pipe.text_encoder), |
|
"Lora not correctly set in text encoder", |
|
) |
|
|
|
prompt = "a red sks dog" |
|
|
|
images = pipe( |
|
prompt=prompt, |
|
num_inference_steps=15, |
|
cross_attention_kwargs={"scale": 0.5}, |
|
generator=torch.manual_seed(0), |
|
output_type="np", |
|
).images |
|
|
|
expected_slice_scale = np.array([0.307, 0.283, 0.310, 0.310, 0.300, 0.314, 0.336, 0.314, 0.321]) |
|
predicted_slice = images[0, -3:, -3:, -1].flatten() |
|
|
|
max_diff = numpy_cosine_similarity_distance(expected_slice_scale, predicted_slice) |
|
assert max_diff < 1e-3 |
|
|
|
pipe.unload_lora_weights() |
|
release_memory(pipe) |
|
|
|
def test_integration_logits_no_scale(self): |
|
path = "runwayml/stable-diffusion-v1-5" |
|
lora_id = "takuma104/lora-test-text-encoder-lora-target" |
|
|
|
pipe = StableDiffusionPipeline.from_pretrained(path, torch_dtype=torch.float32) |
|
pipe.load_lora_weights(lora_id) |
|
pipe = pipe.to(torch_device) |
|
|
|
self.assertTrue( |
|
check_if_lora_correctly_set(pipe.text_encoder), |
|
"Lora not correctly set in text encoder", |
|
) |
|
|
|
prompt = "a red sks dog" |
|
|
|
images = pipe(prompt=prompt, num_inference_steps=30, generator=torch.manual_seed(0), output_type="np").images |
|
|
|
expected_slice_scale = np.array([0.074, 0.064, 0.073, 0.0842, 0.069, 0.0641, 0.0794, 0.076, 0.084]) |
|
predicted_slice = images[0, -3:, -3:, -1].flatten() |
|
|
|
max_diff = numpy_cosine_similarity_distance(expected_slice_scale, predicted_slice) |
|
|
|
assert max_diff < 1e-3 |
|
|
|
pipe.unload_lora_weights() |
|
release_memory(pipe) |
|
|
|
def test_dreambooth_old_format(self): |
|
generator = torch.Generator("cpu").manual_seed(0) |
|
|
|
lora_model_id = "hf-internal-testing/lora_dreambooth_dog_example" |
|
card = RepoCard.load(lora_model_id) |
|
base_model_id = card.data.to_dict()["base_model"] |
|
|
|
pipe = StableDiffusionPipeline.from_pretrained(base_model_id, safety_checker=None) |
|
pipe = pipe.to(torch_device) |
|
pipe.load_lora_weights(lora_model_id) |
|
|
|
images = pipe( |
|
"A photo of a sks dog floating in the river", output_type="np", generator=generator, num_inference_steps=2 |
|
).images |
|
|
|
images = images[0, -3:, -3:, -1].flatten() |
|
expected = np.array([0.7207, 0.6787, 0.6010, 0.7478, 0.6838, 0.6064, 0.6984, 0.6443, 0.5785]) |
|
|
|
max_diff = numpy_cosine_similarity_distance(expected, images) |
|
assert max_diff < 1e-4 |
|
|
|
pipe.unload_lora_weights() |
|
release_memory(pipe) |
|
|
|
def test_dreambooth_text_encoder_new_format(self): |
|
generator = torch.Generator().manual_seed(0) |
|
|
|
lora_model_id = "hf-internal-testing/lora-trained" |
|
card = RepoCard.load(lora_model_id) |
|
base_model_id = card.data.to_dict()["base_model"] |
|
|
|
pipe = StableDiffusionPipeline.from_pretrained(base_model_id, safety_checker=None) |
|
pipe = pipe.to(torch_device) |
|
pipe.load_lora_weights(lora_model_id) |
|
|
|
images = pipe("A photo of a sks dog", output_type="np", generator=generator, num_inference_steps=2).images |
|
|
|
images = images[0, -3:, -3:, -1].flatten() |
|
|
|
expected = np.array([0.6628, 0.6138, 0.5390, 0.6625, 0.6130, 0.5463, 0.6166, 0.5788, 0.5359]) |
|
|
|
max_diff = numpy_cosine_similarity_distance(expected, images) |
|
assert max_diff < 1e-4 |
|
|
|
pipe.unload_lora_weights() |
|
release_memory(pipe) |
|
|
|
def test_a1111(self): |
|
generator = torch.Generator().manual_seed(0) |
|
|
|
pipe = StableDiffusionPipeline.from_pretrained("hf-internal-testing/Counterfeit-V2.5", safety_checker=None).to( |
|
torch_device |
|
) |
|
lora_model_id = "hf-internal-testing/civitai-light-shadow-lora" |
|
lora_filename = "light_and_shadow.safetensors" |
|
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename) |
|
|
|
images = pipe( |
|
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 |
|
).images |
|
|
|
images = images[0, -3:, -3:, -1].flatten() |
|
expected = np.array([0.3636, 0.3708, 0.3694, 0.3679, 0.3829, 0.3677, 0.3692, 0.3688, 0.3292]) |
|
|
|
max_diff = numpy_cosine_similarity_distance(expected, images) |
|
assert max_diff < 1e-3 |
|
|
|
pipe.unload_lora_weights() |
|
release_memory(pipe) |
|
|
|
def test_lycoris(self): |
|
generator = torch.Generator().manual_seed(0) |
|
|
|
pipe = StableDiffusionPipeline.from_pretrained( |
|
"hf-internal-testing/Amixx", safety_checker=None, use_safetensors=True, variant="fp16" |
|
).to(torch_device) |
|
lora_model_id = "hf-internal-testing/edgLycorisMugler-light" |
|
lora_filename = "edgLycorisMugler-light.safetensors" |
|
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename) |
|
|
|
images = pipe( |
|
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 |
|
).images |
|
|
|
images = images[0, -3:, -3:, -1].flatten() |
|
expected = np.array([0.6463, 0.658, 0.599, 0.6542, 0.6512, 0.6213, 0.658, 0.6485, 0.6017]) |
|
|
|
max_diff = numpy_cosine_similarity_distance(expected, images) |
|
assert max_diff < 1e-3 |
|
|
|
pipe.unload_lora_weights() |
|
release_memory(pipe) |
|
|
|
def test_a1111_with_model_cpu_offload(self): |
|
generator = torch.Generator().manual_seed(0) |
|
|
|
pipe = StableDiffusionPipeline.from_pretrained("hf-internal-testing/Counterfeit-V2.5", safety_checker=None) |
|
pipe.enable_model_cpu_offload() |
|
lora_model_id = "hf-internal-testing/civitai-light-shadow-lora" |
|
lora_filename = "light_and_shadow.safetensors" |
|
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename) |
|
|
|
images = pipe( |
|
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 |
|
).images |
|
|
|
images = images[0, -3:, -3:, -1].flatten() |
|
expected = np.array([0.3636, 0.3708, 0.3694, 0.3679, 0.3829, 0.3677, 0.3692, 0.3688, 0.3292]) |
|
|
|
max_diff = numpy_cosine_similarity_distance(expected, images) |
|
assert max_diff < 1e-3 |
|
|
|
pipe.unload_lora_weights() |
|
release_memory(pipe) |
|
|
|
def test_a1111_with_sequential_cpu_offload(self): |
|
generator = torch.Generator().manual_seed(0) |
|
|
|
pipe = StableDiffusionPipeline.from_pretrained("hf-internal-testing/Counterfeit-V2.5", safety_checker=None) |
|
pipe.enable_sequential_cpu_offload() |
|
lora_model_id = "hf-internal-testing/civitai-light-shadow-lora" |
|
lora_filename = "light_and_shadow.safetensors" |
|
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename) |
|
|
|
images = pipe( |
|
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 |
|
).images |
|
|
|
images = images[0, -3:, -3:, -1].flatten() |
|
expected = np.array([0.3636, 0.3708, 0.3694, 0.3679, 0.3829, 0.3677, 0.3692, 0.3688, 0.3292]) |
|
|
|
max_diff = numpy_cosine_similarity_distance(expected, images) |
|
assert max_diff < 1e-3 |
|
|
|
pipe.unload_lora_weights() |
|
release_memory(pipe) |
|
|
|
def test_kohya_sd_v15_with_higher_dimensions(self): |
|
generator = torch.Generator().manual_seed(0) |
|
|
|
pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", safety_checker=None).to( |
|
torch_device |
|
) |
|
lora_model_id = "hf-internal-testing/urushisato-lora" |
|
lora_filename = "urushisato_v15.safetensors" |
|
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename) |
|
|
|
images = pipe( |
|
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 |
|
).images |
|
|
|
images = images[0, -3:, -3:, -1].flatten() |
|
expected = np.array([0.7165, 0.6616, 0.5833, 0.7504, 0.6718, 0.587, 0.6871, 0.6361, 0.5694]) |
|
|
|
max_diff = numpy_cosine_similarity_distance(expected, images) |
|
assert max_diff < 1e-3 |
|
|
|
pipe.unload_lora_weights() |
|
release_memory(pipe) |
|
|
|
def test_vanilla_funetuning(self): |
|
generator = torch.Generator().manual_seed(0) |
|
|
|
lora_model_id = "hf-internal-testing/sd-model-finetuned-lora-t4" |
|
card = RepoCard.load(lora_model_id) |
|
base_model_id = card.data.to_dict()["base_model"] |
|
|
|
pipe = StableDiffusionPipeline.from_pretrained(base_model_id, safety_checker=None) |
|
pipe = pipe.to(torch_device) |
|
pipe.load_lora_weights(lora_model_id) |
|
|
|
images = pipe("A pokemon with blue eyes.", output_type="np", generator=generator, num_inference_steps=2).images |
|
|
|
images = images[0, -3:, -3:, -1].flatten() |
|
|
|
expected = np.array([0.7406, 0.699, 0.5963, 0.7493, 0.7045, 0.6096, 0.6886, 0.6388, 0.583]) |
|
|
|
max_diff = numpy_cosine_similarity_distance(expected, images) |
|
assert max_diff < 1e-4 |
|
|
|
pipe.unload_lora_weights() |
|
release_memory(pipe) |
|
|
|
def test_unload_kohya_lora(self): |
|
generator = torch.manual_seed(0) |
|
prompt = "masterpiece, best quality, mountain" |
|
num_inference_steps = 2 |
|
|
|
pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", safety_checker=None).to( |
|
torch_device |
|
) |
|
initial_images = pipe( |
|
prompt, output_type="np", generator=generator, num_inference_steps=num_inference_steps |
|
).images |
|
initial_images = initial_images[0, -3:, -3:, -1].flatten() |
|
|
|
lora_model_id = "hf-internal-testing/civitai-colored-icons-lora" |
|
lora_filename = "Colored_Icons_by_vizsumit.safetensors" |
|
|
|
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename) |
|
generator = torch.manual_seed(0) |
|
lora_images = pipe( |
|
prompt, output_type="np", generator=generator, num_inference_steps=num_inference_steps |
|
).images |
|
lora_images = lora_images[0, -3:, -3:, -1].flatten() |
|
|
|
pipe.unload_lora_weights() |
|
generator = torch.manual_seed(0) |
|
unloaded_lora_images = pipe( |
|
prompt, output_type="np", generator=generator, num_inference_steps=num_inference_steps |
|
).images |
|
unloaded_lora_images = unloaded_lora_images[0, -3:, -3:, -1].flatten() |
|
|
|
self.assertFalse(np.allclose(initial_images, lora_images)) |
|
self.assertTrue(np.allclose(initial_images, unloaded_lora_images, atol=1e-3)) |
|
|
|
release_memory(pipe) |
|
|
|
def test_load_unload_load_kohya_lora(self): |
|
|
|
|
|
|
|
generator = torch.manual_seed(0) |
|
prompt = "masterpiece, best quality, mountain" |
|
num_inference_steps = 2 |
|
|
|
pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", safety_checker=None).to( |
|
torch_device |
|
) |
|
initial_images = pipe( |
|
prompt, output_type="np", generator=generator, num_inference_steps=num_inference_steps |
|
).images |
|
initial_images = initial_images[0, -3:, -3:, -1].flatten() |
|
|
|
lora_model_id = "hf-internal-testing/civitai-colored-icons-lora" |
|
lora_filename = "Colored_Icons_by_vizsumit.safetensors" |
|
|
|
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename) |
|
generator = torch.manual_seed(0) |
|
lora_images = pipe( |
|
prompt, output_type="np", generator=generator, num_inference_steps=num_inference_steps |
|
).images |
|
lora_images = lora_images[0, -3:, -3:, -1].flatten() |
|
|
|
pipe.unload_lora_weights() |
|
generator = torch.manual_seed(0) |
|
unloaded_lora_images = pipe( |
|
prompt, output_type="np", generator=generator, num_inference_steps=num_inference_steps |
|
).images |
|
unloaded_lora_images = unloaded_lora_images[0, -3:, -3:, -1].flatten() |
|
|
|
self.assertFalse(np.allclose(initial_images, lora_images)) |
|
self.assertTrue(np.allclose(initial_images, unloaded_lora_images, atol=1e-3)) |
|
|
|
|
|
|
|
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename) |
|
generator = torch.manual_seed(0) |
|
lora_images_again = pipe( |
|
prompt, output_type="np", generator=generator, num_inference_steps=num_inference_steps |
|
).images |
|
lora_images_again = lora_images_again[0, -3:, -3:, -1].flatten() |
|
|
|
self.assertTrue(np.allclose(lora_images, lora_images_again, atol=1e-3)) |
|
release_memory(pipe) |
|
|
|
def test_not_empty_state_dict(self): |
|
|
|
pipe = AutoPipelineForText2Image.from_pretrained( |
|
"runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16 |
|
).to(torch_device) |
|
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) |
|
|
|
cached_file = hf_hub_download("hf-internal-testing/lcm-lora-test-sd-v1-5", "test_lora.safetensors") |
|
lcm_lora = load_file(cached_file) |
|
|
|
pipe.load_lora_weights(lcm_lora, adapter_name="lcm") |
|
self.assertTrue(lcm_lora != {}) |
|
release_memory(pipe) |
|
|
|
def test_load_unload_load_state_dict(self): |
|
|
|
pipe = AutoPipelineForText2Image.from_pretrained( |
|
"runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16 |
|
).to(torch_device) |
|
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) |
|
|
|
cached_file = hf_hub_download("hf-internal-testing/lcm-lora-test-sd-v1-5", "test_lora.safetensors") |
|
lcm_lora = load_file(cached_file) |
|
previous_state_dict = lcm_lora.copy() |
|
|
|
pipe.load_lora_weights(lcm_lora, adapter_name="lcm") |
|
self.assertDictEqual(lcm_lora, previous_state_dict) |
|
|
|
pipe.unload_lora_weights() |
|
pipe.load_lora_weights(lcm_lora, adapter_name="lcm") |
|
self.assertDictEqual(lcm_lora, previous_state_dict) |
|
|
|
release_memory(pipe) |
|
|
|
def test_sdv1_5_lcm_lora(self): |
|
pipe = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16) |
|
pipe.to(torch_device) |
|
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) |
|
|
|
generator = torch.Generator("cpu").manual_seed(0) |
|
|
|
lora_model_id = "latent-consistency/lcm-lora-sdv1-5" |
|
pipe.load_lora_weights(lora_model_id) |
|
|
|
image = pipe( |
|
"masterpiece, best quality, mountain", generator=generator, num_inference_steps=4, guidance_scale=0.5 |
|
).images[0] |
|
|
|
expected_image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/lcm_lora/sdv15_lcm_lora.png" |
|
) |
|
|
|
image_np = pipe.image_processor.pil_to_numpy(image) |
|
expected_image_np = pipe.image_processor.pil_to_numpy(expected_image) |
|
|
|
max_diff = numpy_cosine_similarity_distance(image_np.flatten(), expected_image_np.flatten()) |
|
assert max_diff < 1e-4 |
|
|
|
pipe.unload_lora_weights() |
|
|
|
release_memory(pipe) |
|
|
|
def test_sdv1_5_lcm_lora_img2img(self): |
|
pipe = AutoPipelineForImage2Image.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16) |
|
pipe.to(torch_device) |
|
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) |
|
|
|
init_image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape.png" |
|
) |
|
|
|
generator = torch.Generator("cpu").manual_seed(0) |
|
|
|
lora_model_id = "latent-consistency/lcm-lora-sdv1-5" |
|
pipe.load_lora_weights(lora_model_id) |
|
|
|
image = pipe( |
|
"snowy mountain", |
|
generator=generator, |
|
image=init_image, |
|
strength=0.5, |
|
num_inference_steps=4, |
|
guidance_scale=0.5, |
|
).images[0] |
|
|
|
expected_image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/lcm_lora/sdv15_lcm_lora_img2img.png" |
|
) |
|
|
|
image_np = pipe.image_processor.pil_to_numpy(image) |
|
expected_image_np = pipe.image_processor.pil_to_numpy(expected_image) |
|
|
|
max_diff = numpy_cosine_similarity_distance(image_np.flatten(), expected_image_np.flatten()) |
|
assert max_diff < 1e-4 |
|
|
|
pipe.unload_lora_weights() |
|
|
|
release_memory(pipe) |
|
|
|
def test_sd_load_civitai_empty_network_alpha(self): |
|
""" |
|
This test simply checks that loading a LoRA with an empty network alpha works fine |
|
See: https://github.com/huggingface/diffusers/issues/5606 |
|
""" |
|
pipeline = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5") |
|
pipeline.enable_sequential_cpu_offload() |
|
civitai_path = hf_hub_download("ybelkada/test-ahi-civitai", "ahi_lora_weights.safetensors") |
|
pipeline.load_lora_weights(civitai_path, adapter_name="ahri") |
|
|
|
images = pipeline( |
|
"ahri, masterpiece, league of legends", |
|
output_type="np", |
|
generator=torch.manual_seed(156), |
|
num_inference_steps=5, |
|
).images |
|
images = images[0, -3:, -3:, -1].flatten() |
|
expected = np.array([0.0, 0.0, 0.0, 0.002557, 0.020954, 0.001792, 0.006581, 0.00591, 0.002995]) |
|
|
|
max_diff = numpy_cosine_similarity_distance(expected, images) |
|
assert max_diff < 1e-3 |
|
|
|
pipeline.unload_lora_weights() |
|
release_memory(pipeline) |
|
|