NadaGh's picture
End of training
3a25a0a verified
# Run this script to convert the Stable Cascade model weights to a diffusers pipeline.
import argparse
from contextlib import nullcontext
import torch
from safetensors.torch import load_file
from transformers import (
AutoTokenizer,
CLIPConfig,
CLIPImageProcessor,
CLIPTextModelWithProjection,
CLIPVisionModelWithProjection,
)
from diffusers import (
DDPMWuerstchenScheduler,
StableCascadeCombinedPipeline,
StableCascadeDecoderPipeline,
StableCascadePriorPipeline,
)
from diffusers.loaders.single_file_utils import convert_stable_cascade_unet_single_file_to_diffusers
from diffusers.models import StableCascadeUNet
from diffusers.models.modeling_utils import load_model_dict_into_meta
from diffusers.pipelines.wuerstchen import PaellaVQModel
from diffusers.utils import is_accelerate_available
if is_accelerate_available():
from accelerate import init_empty_weights
parser = argparse.ArgumentParser(description="Convert Stable Cascade model weights to a diffusers pipeline")
parser.add_argument("--model_path", type=str, help="Location of Stable Cascade weights")
parser.add_argument("--stage_c_name", type=str, default="stage_c.safetensors", help="Name of stage c checkpoint file")
parser.add_argument("--stage_b_name", type=str, default="stage_b.safetensors", help="Name of stage b checkpoint file")
parser.add_argument("--skip_stage_c", action="store_true", help="Skip converting stage c")
parser.add_argument("--skip_stage_b", action="store_true", help="Skip converting stage b")
parser.add_argument("--use_safetensors", action="store_true", help="Use SafeTensors for conversion")
parser.add_argument(
"--prior_output_path", default="stable-cascade-prior", type=str, help="Hub organization to save the pipelines to"
)
parser.add_argument(
"--decoder_output_path",
type=str,
default="stable-cascade-decoder",
help="Hub organization to save the pipelines to",
)
parser.add_argument(
"--combined_output_path",
type=str,
default="stable-cascade-combined",
help="Hub organization to save the pipelines to",
)
parser.add_argument("--save_combined", action="store_true")
parser.add_argument("--push_to_hub", action="store_true", help="Push to hub")
parser.add_argument("--variant", type=str, help="Set to bf16 to save bfloat16 weights")
args = parser.parse_args()
if args.skip_stage_b and args.skip_stage_c:
raise ValueError("At least one stage should be converted")
if (args.skip_stage_b or args.skip_stage_c) and args.save_combined:
raise ValueError("Cannot skip stages when creating a combined pipeline")
model_path = args.model_path
device = "cpu"
if args.variant == "bf16":
dtype = torch.bfloat16
else:
dtype = torch.float32
# set paths to model weights
prior_checkpoint_path = f"{model_path}/{args.stage_c_name}"
decoder_checkpoint_path = f"{model_path}/{args.stage_b_name}"
# Clip Text encoder and tokenizer
config = CLIPConfig.from_pretrained("laion/CLIP-ViT-bigG-14-laion2B-39B-b160k")
config.text_config.projection_dim = config.projection_dim
text_encoder = CLIPTextModelWithProjection.from_pretrained(
"laion/CLIP-ViT-bigG-14-laion2B-39B-b160k", config=config.text_config
)
tokenizer = AutoTokenizer.from_pretrained("laion/CLIP-ViT-bigG-14-laion2B-39B-b160k")
# image processor
feature_extractor = CLIPImageProcessor()
image_encoder = CLIPVisionModelWithProjection.from_pretrained("openai/clip-vit-large-patch14")
# scheduler for prior and decoder
scheduler = DDPMWuerstchenScheduler()
ctx = init_empty_weights if is_accelerate_available() else nullcontext
if not args.skip_stage_c:
# Prior
if args.use_safetensors:
prior_orig_state_dict = load_file(prior_checkpoint_path, device=device)
else:
prior_orig_state_dict = torch.load(prior_checkpoint_path, map_location=device)
prior_state_dict = convert_stable_cascade_unet_single_file_to_diffusers(prior_orig_state_dict)
with ctx():
prior_model = StableCascadeUNet(
in_channels=16,
out_channels=16,
timestep_ratio_embedding_dim=64,
patch_size=1,
conditioning_dim=2048,
block_out_channels=[2048, 2048],
num_attention_heads=[32, 32],
down_num_layers_per_block=[8, 24],
up_num_layers_per_block=[24, 8],
down_blocks_repeat_mappers=[1, 1],
up_blocks_repeat_mappers=[1, 1],
block_types_per_layer=[
["SDCascadeResBlock", "SDCascadeTimestepBlock", "SDCascadeAttnBlock"],
["SDCascadeResBlock", "SDCascadeTimestepBlock", "SDCascadeAttnBlock"],
],
clip_text_in_channels=1280,
clip_text_pooled_in_channels=1280,
clip_image_in_channels=768,
clip_seq=4,
kernel_size=3,
dropout=[0.1, 0.1],
self_attn=True,
timestep_conditioning_type=["sca", "crp"],
switch_level=[False],
)
if is_accelerate_available():
load_model_dict_into_meta(prior_model, prior_state_dict)
else:
prior_model.load_state_dict(prior_state_dict)
# Prior pipeline
prior_pipeline = StableCascadePriorPipeline(
prior=prior_model,
tokenizer=tokenizer,
text_encoder=text_encoder,
image_encoder=image_encoder,
scheduler=scheduler,
feature_extractor=feature_extractor,
)
prior_pipeline.to(dtype).save_pretrained(
args.prior_output_path, push_to_hub=args.push_to_hub, variant=args.variant
)
if not args.skip_stage_b:
# Decoder
if args.use_safetensors:
decoder_orig_state_dict = load_file(decoder_checkpoint_path, device=device)
else:
decoder_orig_state_dict = torch.load(decoder_checkpoint_path, map_location=device)
decoder_state_dict = convert_stable_cascade_unet_single_file_to_diffusers(decoder_orig_state_dict)
with ctx():
decoder = StableCascadeUNet(
in_channels=4,
out_channels=4,
timestep_ratio_embedding_dim=64,
patch_size=2,
conditioning_dim=1280,
block_out_channels=[320, 640, 1280, 1280],
down_num_layers_per_block=[2, 6, 28, 6],
up_num_layers_per_block=[6, 28, 6, 2],
down_blocks_repeat_mappers=[1, 1, 1, 1],
up_blocks_repeat_mappers=[3, 3, 2, 2],
num_attention_heads=[0, 0, 20, 20],
block_types_per_layer=[
["SDCascadeResBlock", "SDCascadeTimestepBlock"],
["SDCascadeResBlock", "SDCascadeTimestepBlock"],
["SDCascadeResBlock", "SDCascadeTimestepBlock", "SDCascadeAttnBlock"],
["SDCascadeResBlock", "SDCascadeTimestepBlock", "SDCascadeAttnBlock"],
],
clip_text_pooled_in_channels=1280,
clip_seq=4,
effnet_in_channels=16,
pixel_mapper_in_channels=3,
kernel_size=3,
dropout=[0, 0, 0.1, 0.1],
self_attn=True,
timestep_conditioning_type=["sca"],
)
if is_accelerate_available():
load_model_dict_into_meta(decoder, decoder_state_dict)
else:
decoder.load_state_dict(decoder_state_dict)
# VQGAN from Wuerstchen-V2
vqmodel = PaellaVQModel.from_pretrained("warp-ai/wuerstchen", subfolder="vqgan")
# Decoder pipeline
decoder_pipeline = StableCascadeDecoderPipeline(
decoder=decoder, text_encoder=text_encoder, tokenizer=tokenizer, vqgan=vqmodel, scheduler=scheduler
)
decoder_pipeline.to(dtype).save_pretrained(
args.decoder_output_path, push_to_hub=args.push_to_hub, variant=args.variant
)
if args.save_combined:
# Stable Cascade combined pipeline
stable_cascade_pipeline = StableCascadeCombinedPipeline(
# Decoder
text_encoder=text_encoder,
tokenizer=tokenizer,
decoder=decoder,
scheduler=scheduler,
vqgan=vqmodel,
# Prior
prior_text_encoder=text_encoder,
prior_tokenizer=tokenizer,
prior_prior=prior_model,
prior_scheduler=scheduler,
prior_image_encoder=image_encoder,
prior_feature_extractor=feature_extractor,
)
stable_cascade_pipeline.to(dtype).save_pretrained(
args.combined_output_path, push_to_hub=args.push_to_hub, variant=args.variant
)