NadaGh's picture
End of training
3a25a0a verified
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
import unittest
from transformers import AutoTokenizer, CLIPTextModelWithProjection, CLIPTokenizer, T5EncoderModel
from diffusers import FlowMatchEulerDiscreteScheduler, SD3Transformer2DModel, StableDiffusion3Pipeline
from diffusers.utils.testing_utils import is_peft_available, require_peft_backend, require_torch_gpu, torch_device
if is_peft_available():
pass
sys.path.append(".")
from utils import PeftLoraLoaderMixinTests # noqa: E402
@require_peft_backend
class SD3LoRATests(unittest.TestCase, PeftLoraLoaderMixinTests):
pipeline_class = StableDiffusion3Pipeline
scheduler_cls = FlowMatchEulerDiscreteScheduler
scheduler_kwargs = {}
uses_flow_matching = True
transformer_kwargs = {
"sample_size": 32,
"patch_size": 1,
"in_channels": 4,
"num_layers": 1,
"attention_head_dim": 8,
"num_attention_heads": 4,
"caption_projection_dim": 32,
"joint_attention_dim": 32,
"pooled_projection_dim": 64,
"out_channels": 4,
}
transformer_cls = SD3Transformer2DModel
vae_kwargs = {
"sample_size": 32,
"in_channels": 3,
"out_channels": 3,
"block_out_channels": (4,),
"layers_per_block": 1,
"latent_channels": 4,
"norm_num_groups": 1,
"use_quant_conv": False,
"use_post_quant_conv": False,
"shift_factor": 0.0609,
"scaling_factor": 1.5035,
}
has_three_text_encoders = True
tokenizer_cls, tokenizer_id = CLIPTokenizer, "hf-internal-testing/tiny-random-clip"
tokenizer_2_cls, tokenizer_2_id = CLIPTokenizer, "hf-internal-testing/tiny-random-clip"
tokenizer_3_cls, tokenizer_3_id = AutoTokenizer, "hf-internal-testing/tiny-random-t5"
text_encoder_cls, text_encoder_id = CLIPTextModelWithProjection, "hf-internal-testing/tiny-sd3-text_encoder"
text_encoder_2_cls, text_encoder_2_id = CLIPTextModelWithProjection, "hf-internal-testing/tiny-sd3-text_encoder-2"
text_encoder_3_cls, text_encoder_3_id = T5EncoderModel, "hf-internal-testing/tiny-random-t5"
@property
def output_shape(self):
return (1, 32, 32, 3)
@require_torch_gpu
def test_sd3_lora(self):
"""
Test loading the loras that are saved with the diffusers and peft formats.
Related PR: https://github.com/huggingface/diffusers/pull/8584
"""
components = self.get_dummy_components()
pipe = self.pipeline_class(**components[0])
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
lora_model_id = "hf-internal-testing/tiny-sd3-loras"
lora_filename = "lora_diffusers_format.safetensors"
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
pipe.unload_lora_weights()
lora_filename = "lora_peft_format.safetensors"
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)