# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import os import sys import tempfile import safetensors sys.path.append("..") from test_examples_utils import ExamplesTestsAccelerate, run_command # noqa: E402 logging.basicConfig(level=logging.DEBUG) logger = logging.getLogger() stream_handler = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class DreamBoothLoRASD3(ExamplesTestsAccelerate): instance_data_dir = "docs/source/en/imgs" instance_prompt = "photo" pretrained_model_name_or_path = "hf-internal-testing/tiny-sd3-pipe" script_path = "examples/dreambooth/train_dreambooth_lora_sd3.py" def test_dreambooth_lora_sd3(self): with tempfile.TemporaryDirectory() as tmpdir: test_args = f""" {self.script_path} --pretrained_model_name_or_path {self.pretrained_model_name_or_path} --instance_data_dir {self.instance_data_dir} --instance_prompt {self.instance_prompt} --resolution 64 --train_batch_size 1 --gradient_accumulation_steps 1 --max_train_steps 2 --learning_rate 5.0e-04 --scale_lr --lr_scheduler constant --lr_warmup_steps 0 --output_dir {tmpdir} """.split() run_command(self._launch_args + test_args) # save_pretrained smoke test self.assertTrue(os.path.isfile(os.path.join(tmpdir, "pytorch_lora_weights.safetensors"))) # make sure the state_dict has the correct naming in the parameters. lora_state_dict = safetensors.torch.load_file(os.path.join(tmpdir, "pytorch_lora_weights.safetensors")) is_lora = all("lora" in k for k in lora_state_dict.keys()) self.assertTrue(is_lora) # when not training the text encoder, all the parameters in the state dict should start # with `"transformer"` in their names. starts_with_transformer = all(key.startswith("transformer") for key in lora_state_dict.keys()) self.assertTrue(starts_with_transformer) def test_dreambooth_lora_text_encoder_sd3(self): with tempfile.TemporaryDirectory() as tmpdir: test_args = f""" {self.script_path} --pretrained_model_name_or_path {self.pretrained_model_name_or_path} --instance_data_dir {self.instance_data_dir} --instance_prompt {self.instance_prompt} --resolution 64 --train_batch_size 1 --train_text_encoder --gradient_accumulation_steps 1 --max_train_steps 2 --learning_rate 5.0e-04 --scale_lr --lr_scheduler constant --lr_warmup_steps 0 --output_dir {tmpdir} """.split() run_command(self._launch_args + test_args) # save_pretrained smoke test self.assertTrue(os.path.isfile(os.path.join(tmpdir, "pytorch_lora_weights.safetensors"))) # make sure the state_dict has the correct naming in the parameters. lora_state_dict = safetensors.torch.load_file(os.path.join(tmpdir, "pytorch_lora_weights.safetensors")) is_lora = all("lora" in k for k in lora_state_dict.keys()) self.assertTrue(is_lora) starts_with_expected_prefix = all( (key.startswith("transformer") or key.startswith("text_encoder")) for key in lora_state_dict.keys() ) self.assertTrue(starts_with_expected_prefix) def test_dreambooth_lora_sd3_checkpointing_checkpoints_total_limit(self): with tempfile.TemporaryDirectory() as tmpdir: test_args = f""" {self.script_path} --pretrained_model_name_or_path={self.pretrained_model_name_or_path} --instance_data_dir={self.instance_data_dir} --output_dir={tmpdir} --instance_prompt={self.instance_prompt} --resolution=64 --train_batch_size=1 --gradient_accumulation_steps=1 --max_train_steps=6 --checkpoints_total_limit=2 --checkpointing_steps=2 """.split() run_command(self._launch_args + test_args) self.assertEqual( {x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-4", "checkpoint-6"}, ) def test_dreambooth_lora_sd3_checkpointing_checkpoints_total_limit_removes_multiple_checkpoints(self): with tempfile.TemporaryDirectory() as tmpdir: test_args = f""" {self.script_path} --pretrained_model_name_or_path={self.pretrained_model_name_or_path} --instance_data_dir={self.instance_data_dir} --output_dir={tmpdir} --instance_prompt={self.instance_prompt} --resolution=64 --train_batch_size=1 --gradient_accumulation_steps=1 --max_train_steps=4 --checkpointing_steps=2 """.split() run_command(self._launch_args + test_args) self.assertEqual({x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-2", "checkpoint-4"}) resume_run_args = f""" {self.script_path} --pretrained_model_name_or_path={self.pretrained_model_name_or_path} --instance_data_dir={self.instance_data_dir} --output_dir={tmpdir} --instance_prompt={self.instance_prompt} --resolution=64 --train_batch_size=1 --gradient_accumulation_steps=1 --max_train_steps=8 --checkpointing_steps=2 --resume_from_checkpoint=checkpoint-4 --checkpoints_total_limit=2 """.split() run_command(self._launch_args + resume_run_args) self.assertEqual({x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-6", "checkpoint-8"})