# Latent Consistency Distillation Example: [Latent Consistency Models (LCMs)](https://arxiv.org/abs/2310.04378) is a method to distill a latent diffusion model to enable swift inference with minimal steps. This example demonstrates how to use latent consistency distillation to distill SDXL for inference with few timesteps. ## Full model distillation ### Running locally with PyTorch #### Installing the dependencies Before running the scripts, make sure to install the library's training dependencies: **Important** To make sure you can successfully run the latest versions of the example scripts, we highly recommend **installing from source** and keeping the install up to date as we update the example scripts frequently and install some example-specific requirements. To do this, execute the following steps in a new virtual environment: ```bash git clone https://github.com/huggingface/diffusers cd diffusers pip install -e . ``` Then cd in the example folder and run ```bash pip install -r requirements.txt ``` And initialize an [🤗 Accelerate](https://github.com/huggingface/accelerate/) environment with: ```bash accelerate config ``` Or for a default accelerate configuration without answering questions about your environment ```bash accelerate config default ``` Or if your environment doesn't support an interactive shell e.g. a notebook ```python from accelerate.utils import write_basic_config write_basic_config() ``` When running `accelerate config`, if we specify torch compile mode to True there can be dramatic speedups. #### Example The following uses the [Conceptual Captions 12M (CC12M) dataset](https://github.com/google-research-datasets/conceptual-12m) as an example, and for illustrative purposes only. For best results you may consider large and high-quality text-image datasets such as [LAION](https://laion.ai/blog/laion-400-open-dataset/). You may also need to search the hyperparameter space according to the dataset you use. ```bash export MODEL_NAME="stabilityai/stable-diffusion-xl-base-1.0" export OUTPUT_DIR="path/to/saved/model" accelerate launch train_lcm_distill_sdxl_wds.py \ --pretrained_teacher_model=$MODEL_NAME \ --pretrained_vae_model_name_or_path=madebyollin/sdxl-vae-fp16-fix \ --output_dir=$OUTPUT_DIR \ --mixed_precision=fp16 \ --resolution=1024 \ --learning_rate=1e-6 --loss_type="huber" --use_fix_crop_and_size --ema_decay=0.95 --adam_weight_decay=0.0 \ --max_train_steps=1000 \ --max_train_samples=4000000 \ --dataloader_num_workers=8 \ --train_shards_path_or_url="pipe:curl -L -s https://huggingface.co/datasets/laion/conceptual-captions-12m-webdataset/resolve/main/data/{00000..01099}.tar?download=true" \ --validation_steps=200 \ --checkpointing_steps=200 --checkpoints_total_limit=10 \ --train_batch_size=12 \ --gradient_checkpointing --enable_xformers_memory_efficient_attention \ --gradient_accumulation_steps=1 \ --use_8bit_adam \ --resume_from_checkpoint=latest \ --report_to=wandb \ --seed=453645634 \ --push_to_hub \ ``` ## LCM-LoRA Instead of fine-tuning the full model, we can also just train a LoRA that can be injected into any SDXL model. ### Example The following uses the [Conceptual Captions 12M (CC12M) dataset](https://github.com/google-research-datasets/conceptual-12m) as an example. For best results you may consider large and high-quality text-image datasets such as [LAION](https://laion.ai/blog/laion-400-open-dataset/). ```bash export MODEL_NAME="stabilityai/stable-diffusion-xl-base-1.0" export OUTPUT_DIR="path/to/saved/model" accelerate launch train_lcm_distill_lora_sdxl_wds.py \ --pretrained_teacher_model=$MODEL_DIR \ --pretrained_vae_model_name_or_path=madebyollin/sdxl-vae-fp16-fix \ --output_dir=$OUTPUT_DIR \ --mixed_precision=fp16 \ --resolution=1024 \ --lora_rank=64 \ --learning_rate=1e-4 --loss_type="huber" --use_fix_crop_and_size --adam_weight_decay=0.0 \ --max_train_steps=1000 \ --max_train_samples=4000000 \ --dataloader_num_workers=8 \ --train_shards_path_or_url="pipe:curl -L -s https://huggingface.co/datasets/laion/conceptual-captions-12m-webdataset/resolve/main/data/{00000..01099}.tar?download=true" \ --validation_steps=200 \ --checkpointing_steps=200 --checkpoints_total_limit=10 \ --train_batch_size=12 \ --gradient_checkpointing --enable_xformers_memory_efficient_attention \ --gradient_accumulation_steps=1 \ --use_8bit_adam \ --resume_from_checkpoint=latest \ --report_to=wandb \ --seed=453645634 \ --push_to_hub \ ``` We provide another version for LCM LoRA SDXL that follows best practices of `peft` and leverages the `datasets` library for quick experimentation. The script doesn't load two UNets unlike `train_lcm_distill_lora_sdxl_wds.py` which reduces the memory requirements quite a bit. Below is an example training command that trains an LCM LoRA on the [Narutos dataset](https://huggingface.co/datasets/lambdalabs/naruto-blip-captions): ```bash export MODEL_NAME="stabilityai/stable-diffusion-xl-base-1.0" export DATASET_NAME="lambdalabs/naruto-blip-captions" export VAE_PATH="madebyollin/sdxl-vae-fp16-fix" accelerate launch train_lcm_distill_lora_sdxl.py \ --pretrained_teacher_model=${MODEL_NAME} \ --pretrained_vae_model_name_or_path=${VAE_PATH} \ --output_dir="narutos-lora-lcm-sdxl" \ --mixed_precision="fp16" \ --dataset_name=$DATASET_NAME \ --resolution=1024 \ --train_batch_size=24 \ --gradient_accumulation_steps=1 \ --gradient_checkpointing \ --use_8bit_adam \ --lora_rank=64 \ --learning_rate=1e-4 \ --report_to="wandb" \ --lr_scheduler="constant" \ --lr_warmup_steps=0 \ --max_train_steps=3000 \ --checkpointing_steps=500 \ --validation_steps=50 \ --seed="0" \ --report_to="wandb" \ --push_to_hub ```