# Text-guided depth-to-image generation [[open-in-colab]] The [`StableDiffusionDepth2ImgPipeline`] lets you pass a text prompt and an initial image to condition the generation of new images. In addition, you can also pass a `depth_map` to preserve the image structure. If no `depth_map` is provided, the pipeline automatically predicts the depth via an integrated [depth-estimation model](https://github.com/isl-org/MiDaS). Start by creating an instance of the [`StableDiffusionDepth2ImgPipeline`]: ```python import torch from diffusers import StableDiffusionDepth2ImgPipeline from diffusers.utils import load_image, make_image_grid pipeline = StableDiffusionDepth2ImgPipeline.from_pretrained( "stabilityai/stable-diffusion-2-depth", torch_dtype=torch.float16, use_safetensors=True, ).to("cuda") ``` Now pass your prompt to the pipeline. You can also pass a `negative_prompt` to prevent certain words from guiding how an image is generated: ```python url = "http://images.cocodataset.org/val2017/000000039769.jpg" init_image = load_image(url) prompt = "two tigers" negative_prompt = "bad, deformed, ugly, bad anatomy" image = pipeline(prompt=prompt, image=init_image, negative_prompt=negative_prompt, strength=0.7).images[0] make_image_grid([init_image, image], rows=1, cols=2) ``` | Input | Output | |---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------| | | |