--- license: mit base_model: sagorsarker/bangla-bert-base tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: bangla-bert-base-MLTC-BBAU results: [] --- # bangla-bert-base-MLTC-BBAU This model is a fine-tuned version of [sagorsarker/bangla-bert-base](https://huggingface.co/sagorsarker/bangla-bert-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3665 - F1: 0.8465 - F1 Weighted: 0.8455 - Roc Auc: 0.8412 - Accuracy: 0.5424 - Hamming Loss: 0.1587 - Jaccard Score: 0.7338 - Zero One Loss: 0.4576 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | F1 Weighted | Roc Auc | Accuracy | Hamming Loss | Jaccard Score | Zero One Loss | |:-------------:|:-----:|:----:|:---------------:|:------:|:-----------:|:-------:|:--------:|:------------:|:-------------:|:-------------:| | 0.4152 | 1.0 | 73 | 0.4083 | 0.8201 | 0.8155 | 0.8181 | 0.4987 | 0.1819 | 0.6950 | 0.5013 | | 0.3506 | 2.0 | 146 | 0.3671 | 0.8504 | 0.8509 | 0.8496 | 0.5681 | 0.1504 | 0.7397 | 0.4319 | | 0.2992 | 3.0 | 219 | 0.3665 | 0.8465 | 0.8455 | 0.8412 | 0.5424 | 0.1587 | 0.7338 | 0.4576 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.1.2 - Datasets 2.19.2 - Tokenizers 0.19.1