--- library_name: transformers datasets: - NamCyan/tesoro-code base_model: - microsoft/unixcoder-base --- # Improving the detection of technical debt in Java source code with an enriched dataset ## Model Details ### Model Description This model is the part of Tesoro project, used for detecting technical debt in source code. More information can be found at [Tesoro HomePage](https://github.com/NamCyan/tesoro.git). - **Developed by:** [Nam Hai Le](https://github.com/NamCyan) - **Model type:** Encoder-based PLMs - **Language(s):** Java - **Finetuned from model:** [UniXCoder](https://huggingface.co/microsoft/unixcoder-base) ### Model Sources - **Repository:** [Tesoro](https://github.com/NamCyan/tesoro.git) - **Paper:** [To be update] ## How to Get Started with the Model Use the code below to get started with the model. ```python from transformers import AutoModelForSequenceClassification, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("NamCyan/unixcoder-base-technical-debt-code-tesoro") model = AutoModelForSequenceClassification.from_pretrained("NamCyan/unixcoder-base-technical-debt-code-tesoro") ``` ## Training Details - Training Data: The model is finetuned using [tesoro-code](https://huggingface.co/datasets/NamCyan/tesoro-code) - Infrastructure: Training process is conducted on two NVIDIA A100 GPUs with 80GB of VRAM. ## Leaderboard | Model | Model size | EM | F1 | |:-------------|:-----------|:------------------|:------------------| | **Encoder-based PLMs** | | [CodeBERT](https://huggingface.co/microsoft/codebert-base) | 125M | 38.28 | 43.47 | | [UniXCoder](https://huggingface.co/microsoft/unixcoder-base) | 125M | 38.12 | 42.58 | | [GraphCodeBERT](https://huggingface.co/microsoft/graphcodebert-base)| 125M | *39.38* | *44.21* | | [RoBERTa](https://huggingface.co/FacebookAI/roberta-base) | 125M | 35.37 | 38.22 | | [ALBERT](https://huggingface.co/albert/albert-base-v2) | 11.8M | 39.32 | 41.99 | | **Encoder-Decoder-based PLMs** | | [PLBART](https://huggingface.co/uclanlp/plbart-base) | 140M | 36.85 | 39.90 | | [Codet5](https://huggingface.co/Salesforce/codet5-base) | 220M | 32.66 | 35.41 | | [CodeT5+](https://huggingface.co/Salesforce/codet5p-220m) | 220M | 37.91 | 41.96 | | **Decoder-based PLMs (LLMs)** | | [TinyLlama](https://huggingface.co/TinyLlama/TinyLlama_v1.1_math_code) | 1.03B | 37.05 | 40.05 | | [DeepSeek-Coder](https://huggingface.co/deepseek-ai/deepseek-coder-1.3b-base) | 1.28B | **42.52** | **46.19** | | [OpenCodeInterpreter](https://huggingface.co/m-a-p/OpenCodeInterpreter-DS-1.3B) | 1.35B | 38.16 | 41.76 | | [phi-2](https://huggingface.co/microsoft/phi-2) | 2.78B | 37.92 | 41.57 | | [starcoder2](https://huggingface.co/bigcode/starcoder2-3b) | 3.03B | 35.37 | 41.77 | | [CodeLlama](https://huggingface.co/codellama/CodeLlama-7b-hf) | 6.74B | 34.14 | 38.16 | | [Magicoder](https://huggingface.co/ise-uiuc/Magicoder-S-DS-6.7B) | 6.74B | 39.14 | 42.49 | ## Citing us ```bibtex @article{nam2024tesoro, title={Improving the detection of technical debt in Java source code with an enriched dataset}, author={Hai, Nam Le and Bui, Anh M. T. Bui and Nguyen, Phuong T. and Ruscio, Davide Di and Kazman, Rick}, journal={}, year={2024} } ```