File size: 3,374 Bytes
93a1412 173aefc 6ef2e6e 173aefc c826639 93a1412 c826639 93a1412 c826639 c3b7561 93a1412 c826639 93a1412 6ef2e6e aa0e4e4 d932409 aa0e4e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 |
---
license: apache-2.0
datasets:
- ichikara-instruction
- elyza/ELYZA-tasks-100
- weblab-GENIAC/aya-ja-evol-instruct-calm3-dpo-masked
- llm-jp/hh-rlhf-12k-ja
language:
- ja
base_model:
- llm-jp/llm-jp-3-13b
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
---
# Uploaded model
- **Developed by:** Namazu11
- **License:** apache-2.0
- **Finetuned from model :** llm-jp/llm-jp-3-13b
- **Dataset(タグ付け以外) :** ichikara-instruction(<a href="https://liat-aip.sakura.ne.jp/wp/llm%E3%81%AE%E3%81%9F%E3%82%81%E3%81%AE%E6%97%A5%E6%9C%AC%E8%AA%9E%E3%82%A4%E3%83%B3%E3%82%B9%E3%83%88%E3%83%A9%E3%82%AF%E3%82%B7%E3%83%A7%E3%83%B3%E3%83%87%E3%83%BC%E3%82%BF%E4%BD%9C%E6%88%90/">HPリンク</a>)
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
■このモデルは東京大学リスキリング講座「大規模言語モデル2024」の最終課題(コンペ)のためのものです。
「ELYZA-tasks-100-TV」というデータセットが配布され、精度を競います。
# Sample Use
```python
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
)
HF_TOKEN = "Your Hugging Face Token"
base_model_id = "llm-jp/llm-jp-3-13b"
adapter_id = "Namazu11/llm-jp-3-13b-sft-dpo2"
# QLoRA config
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
)
# Load model
model = AutoModelForCausalLM.from_pretrained(
model_id,
quantization_config=bnb_config,
device_map="auto",
token = HF_TOKEN
)
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True, token = HF_TOKEN)
# 元のモデルにLoRAのアダプタを統合。
model = PeftModel.from_pretrained(model, adapter_id, token = HF_TOKEN)
# データセットの読み込み。
datasets = []
with open("./elyza-tasks-100-TV_0.jsonl", "r") as f:
item = ""
for line in f:
line = line.strip()
item += line
if item.endswith("}"):
datasets.append(json.loads(item))
item = ""
# 推論(llmjp)
results = []
for data in tqdm(datasets):
input = data["input"]
prompt = f"""### 指示
{input}
### 回答
"""
tokenized_input = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt").to(model.device)
attention_mask = torch.ones_like(tokenized_input)
with torch.no_grad():
outputs = model.generate(
tokenized_input,
attention_mask=attention_mask,
max_new_tokens=100,
do_sample=False,
repetition_penalty=1.2,
pad_token_id=tokenizer.eos_token_id
)[0]
output = tokenizer.decode(outputs[tokenized_input.size(1):], skip_special_tokens=True)
results.append({"task_id": data["task_id"], "input": input, "output": output})
# 出力結果のjsolファイル生成
import re
jsonl_id = re.sub(".*/", "", adapter_id)
with open(f"./{jsonl_id}-outputs.jsonl", 'w', encoding='utf-8') as f:
for result in results:
json.dump(result, f, ensure_ascii=False) # ensure_ascii=False for handling non-ASCII characters
f.write('\n') |