--- license: apache-2.0 datasets: - ichikara-instruction - elyza/ELYZA-tasks-100 - weblab-GENIAC/aya-ja-evol-instruct-calm3-dpo-masked - llm-jp/hh-rlhf-12k-ja language: - ja base_model: - llm-jp/llm-jp-3-13b tags: - text-generation-inference - transformers - unsloth - llama - trl --- # Uploaded model - **Developed by:** Namazu11 - **License:** apache-2.0 - **Finetuned from model :** llm-jp/llm-jp-3-13b This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [](https://github.com/unslothai/unsloth) ■このモデルは東京大学リスキリング講座「大規模言語モデル2024」の最終課題(コンペ)のためのものです。 「ELYZA-tasks-100-TV」というデータセットが配布され、精度を競います。 # Sample Use ```python from transformers import ( AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, ) HF_TOKEN = "Hugging Face Token" base_model_id = "llm-jp/llm-jp-3-13b" adapter_id = "Namazu11/llm-jp-3-13b-sft-dpo2" # QLoRA config bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16, ) # Load model model = AutoModelForCausalLM.from_pretrained( model_id, quantization_config=bnb_config, device_map="auto", token = HF_TOKEN ) # Load tokenizer tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True, token = HF_TOKEN) # 元のモデルにLoRAのアダプタを統合。 model = PeftModel.from_pretrained(model, adapter_id, token = HF_TOKEN) # データセットの読み込み。 datasets = [] with open("./elyza-tasks-100-TV_0.jsonl", "r") as f: item = "" for line in f: line = line.strip() item += line if item.endswith("}"): datasets.append(json.loads(item)) item = "" # 推論(llmjp) results = [] for data in tqdm(datasets): input = data["input"] prompt = f"""### 指示 {input} ### 回答 """ tokenized_input = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt").to(model.device) attention_mask = torch.ones_like(tokenized_input) with torch.no_grad(): outputs = model.generate( tokenized_input, attention_mask=attention_mask, max_new_tokens=100, do_sample=False, repetition_penalty=1.2, pad_token_id=tokenizer.eos_token_id )[0] output = tokenizer.decode(outputs[tokenized_input.size(1):], skip_special_tokens=True) results.append({"task_id": data["task_id"], "input": input, "output": output}) # 出力結果のjsolファイル生成 import re jsonl_id = re.sub(".*/", "", adapter_id) with open(f"./{jsonl_id}-outputs.jsonl", 'w', encoding='utf-8') as f: for result in results: json.dump(result, f, ensure_ascii=False) # ensure_ascii=False for handling non-ASCII characters f.write('\n')