File size: 2,211 Bytes
07ae5fc 8b053bd 4758a67 07ae5fc 0850cf5 07ae5fc 0850cf5 07ae5fc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
---
tags:
- summarization
- news
language: es
datasets:
- mlsum
---
# Spanish RoBERTa2RoBERTa (roberta-base-bne) fine-tuned on MLSUM ES for summarization
## Model
[BSC-TeMU/roberta-base-bne](https://huggingface.co/BSC-TeMU/roberta-base-bne) (RoBERTa Checkpoint)
## Dataset
**MLSUM** is the first large-scale MultiLingual SUMmarization dataset. Obtained from online newspapers, it contains 1.5M+ article/summary pairs in five different languages -- namely, French, German, **Spanish**, Russian, Turkish. Together with English newspapers from the popular CNN/Daily mail dataset, the collected data form a large scale multilingual dataset which can enable new research directions for the text summarization community. We report cross-lingual comparative analyses based on state-of-the-art systems. These highlight existing biases which motivate the use of a multi-lingual dataset.
[MLSUM es](https://huggingface.co/datasets/viewer/?dataset=mlsum)
## Results (WIP)
|Set|Metric| Value|
|----|------|------|
| Test |Rouge2 - mid -precision | 11.42|
| Test | Rouge2 - mid - recall | 10.58 |
| Test | Rouge2 - mid - fmeasure | 10.69|
| Test | Rouge1 - fmeasure | 28.83 |
| Test | RougeL - fmeasure | 23.15 |
## Usage
```python
import torch
from transformers import RobertaTokenizerFast, EncoderDecoderModel
device = 'cuda' if torch.cuda.is_available() else 'cpu'
ckpt = 'Narrativa/bsc_roberta2roberta_shared-spanish-finetuned-mlsum-summarization'
tokenizer = RobertaTokenizerFast.from_pretrained(ckpt)
model = EncoderDecoderModel.from_pretrained(ckpt).to(device)
def generate_summary(text):
inputs = tokenizer([text], padding="max_length", truncation=True, max_length=512, return_tensors="pt")
input_ids = inputs.input_ids.to(device)
attention_mask = inputs.attention_mask.to(device)
output = model.generate(input_ids, attention_mask=attention_mask)
return tokenizer.decode(output[0], skip_special_tokens=True)
text = "Your text here..."
generate_summary(text)
```
Created by: [Narrativa](https://www.narrativa.com/)
About Narrativa: Natural Language Generation (NLG) | Gabriele, our machine learning-based platform, builds and deploys natural language solutions. #NLG #AI
|