a2c-AntBulletEnv-v0 / config.json
Naruke's picture
Initial commit
66659b7
raw
history blame
14.3 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7e7859004550>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e78590045e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e7859004670>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e7859004700>", "_build": "<function ActorCriticPolicy._build at 0x7e7859004790>", "forward": "<function ActorCriticPolicy.forward at 0x7e7859004820>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e78590048b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e7859004940>", "_predict": "<function ActorCriticPolicy._predict at 0x7e78590049d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e7859004a60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e7859004af0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e7859004b80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e7859011240>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690440744081263753, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAFoVkT98/bU+hxKmPj1KML6bSTY/Dr7GvlbShr8Cfhw/YDz2vYCvrj55/nW/t1I9wL7AYb+z0TU/YmTmvpDaR7+MGBG/Fp1Uv/JIHMDb7QXAKKGEv0XFyDzab7k/BC/Jv16Rcr/qqCI/TFS6PsVWEz81cDC+nPbHPtpMlz4lLVC/1guxP/oRnT5XNWI+DhOGviskvr6bQb8/8HqBP/lHDj+ix7u/VzixPFTEYz9B/Dg/YYB+P9cFKUAhKjQ/FCRtPjHb/j+ZHXdAJK8VP9SaFUCGFoc/enPJv0xUuj4VZt6/ziRNvkEFxj7q7Jg+jmc3P8ohsz8e742/mNcvP0VIBb7JzZi+4R9CP/T6nD8tiF0/4dGFPyTzzz6TYJ0+2KncPxcFBbuchdU/RmE6P9GjBEDnexK/h2C7PzPPSr/tmSs+hhaHP+qoIj9W3C/AxVYTP6B0gz+iVZy9hXIZP5ajdT/VfcE/dA3OvvuXHb91AF69NQqdvm6qVL8Rfua+q8tbvyc0dT3nlWE/DIJavjC1Hb+tVMo77y9iv3Mthb8Gru6/JxGEv5NM9zw9bY0/lhyOv16Rcr/qqCI/TFS6PsVWEz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAC8FtQ2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACARcHlvQAAAADJSe6/AAAAAInYlz0AAAAAHfLqPwAAAAAXe927AAAAAJgx8T8AAAAAh8i1vQAAAACzZPC/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA7f4NQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgNDmC74AAAAAkUn8vwAAAAD2kWG9AAAAAHZt5T8AAAAA+eEQPgAAAACN+fc/AAAAAAANDT4AAAAARtDyvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE5WkTYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBW/Su9AAAAAMMt2r8AAAAAVlO+vQAAAAC98t0/AAAAADHh0D0AAAAAV9XvPwAAAACXfA++AAAAAKmS4L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABJ6+M1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAAci8OwAAAAD3dvC/AAAAAC94WTwAAAAAnCfvPwAAAADClbW8AAAAAC5n2z8AAAAA6lfBvQAAAADm7gDAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJYXMeNkvsaMAWyUTegDjAF0lEdAqWfj4nF5wHV9lChoBkdAl58WIfr8i2gHTegDaAhHQKlvHDu0CzV1fZQoaAZHQJgMojiXIENoB03oA2gIR0Cpb3vc8DB/dX2UKGgGR0CVBrSkCV8kaAdN6ANoCEdAqXCivTw2EXV9lChoBkdAl0hoXoC+12gHTegDaAhHQKl1Cj2zv7Z1fZQoaAZHQJYAFi5NGmVoB03oA2gIR0CpfYQJ5VwQdX2UKGgGR0CV/K2dd3SsaAdN6ANoCEdAqX3i/VRUFXV9lChoBkdAlerHavicXmgHTegDaAhHQKl/CCqZML51fZQoaAZHQJWz9tALRa5oB03oA2gIR0CpgsfQ8fV7dX2UKGgGR0CVeS779AHFaAdN6ANoCEdAqYnsawUxmHV9lChoBkdAlQttOM2m52gHTegDaAhHQKmKU2ycCo11fZQoaAZHQJZ9dVsDW9VoB03oA2gIR0Cpi3yVObiIdX2UKGgGR0CXwgv1lGwzaAdN6ANoCEdAqZDCf+S8rnV9lChoBkdAl5eYBNmDlGgHTegDaAhHQKmYSRDkU9J1fZQoaAZHQJa/OugYgq5oB03oA2gIR0CpmKhpg1FZdX2UKGgGR0CXSJ75VOsUaAdN6ANoCEdAqZnLUI9kjHV9lChoBkdAlSX7KV6eG2gHTegDaAhHQKmdi7YkE9t1fZQoaAZHQJdjFv1lGw1oB03oA2gIR0CppNEm6XjVdX2UKGgGR0CSxgUXHim3aAdN6ANoCEdAqaUtObiIcnV9lChoBkdAmCn+uRs/IWgHTegDaAhHQKmmsRODaoN1fZQoaAZHQJffHK/20zFoB03oA2gIR0Cpq896LOzIdX2UKGgGR0CY43qnm7rcaAdN6ANoCEdAqbMT2tdRi3V9lChoBkdAmHopsCT2WmgHTegDaAhHQKmzbrvb48F1fZQoaAZHQJhogOTaCcxoB03oA2gIR0CptJA/9pAVdX2UKGgGR0CcCv3KB/ZvaAdN6ANoCEdAqbhxobn5i3V9lChoBkdAmpuPTXrdFmgHTegDaAhHQKm/9Lxqfvp1fZQoaAZHQJgaw4jrzGxoB03oA2gIR0CpwIHRCx/vdX2UKGgGR0CVUhJrcj7iaAdN6ANoCEdAqcI1UKiPAHV9lChoBkdAlwLXlS0jT2gHTegDaAhHQKnGp4s3AEd1fZQoaAZHQJTRCf16E8JoB03oA2gIR0CpzdEX+ERKdX2UKGgGR0CWNfpfQa73aAdN6ANoCEdAqc4tYuCf6HV9lChoBkdAllCPTkQwsWgHTegDaAhHQKnPUKZUkv91fZQoaAZHQJK3mn+AEuBoB03oA2gIR0Cp0vx59mYjdX2UKGgGR0CX563Sa3I/aAdN6ANoCEdAqdsraXa8H3V9lChoBkdAk+ylBUrCnGgHTegDaAhHQKnbu8PnSv11fZQoaAZHQJMxM1IiC8RoB03oA2gIR0Cp3XA4ffXPdX2UKGgGR0CVbOT8HfMwaAdN6ANoCEdAqeEV4JNTLnV9lChoBkdAlRwFwxWT5mgHTegDaAhHQKnoMR3/xUh1fZQoaAZHQJSQPRSgoPVoB03oA2gIR0Cp6I6NVBD5dX2UKGgGR0CUetqcmShbaAdN6ANoCEdAqem2KoAGS3V9lChoBkdAlK78IJJGv2gHTegDaAhHQKnthgbZOBV1fZQoaAZHQJWmaw3YL9doB03oA2gIR0Cp9p96cAindX2UKGgGR0CVIJmJ3xFzaAdN6ANoCEdAqfcAwZflZHV9lChoBkdAlThU29+PR2gHTegDaAhHQKn4Ke7tiQV1fZQoaAZHQJcZ6Il+mWNoB03oA2gIR0Cp+9yM98qndX2UKGgGR0CXqQBp5/smaAdN6ANoCEdAqgMu65Gz8nV9lChoBkdAmDCjlo11n2gHTegDaAhHQKoDjk6Lfk51fZQoaAZHQJY0u8oQWepoB03oA2gIR0CqBLiIcinpdX2UKGgGR0CTAfg8bJfZaAdN6ANoCEdAqgiMB4lhPXV9lChoBkdAkk5S1Vo6CGgHTegDaAhHQKoRpnSOR1Z1fZQoaAZHQJU6xL8JlatoB03oA2gIR0CqEgHU2DQJdX2UKGgGR0CVbYUWl/H6aAdN6ANoCEdAqhMy5AhStXV9lChoBkdAln0FhsqJ/GgHTegDaAhHQKoW+NHYpUh1fZQoaAZHQJQoOWE9MbpoB03oA2gIR0CqHjQJXyRTdX2UKGgGR0CWs1HpbD/EaAdN6ANoCEdAqh6QVdonKHV9lChoBkdAlWuB2B8QZmgHTegDaAhHQKofssFt8/l1fZQoaAZHQJI5U3974SJoB03oA2gIR0CqI3X1J17qdX2UKGgGR0CNzhcHnlnzaAdN6ANoCEdAqixKNp/PPnV9lChoBkdAksXNrO7g9GgHTegDaAhHQKosstxMnJF1fZQoaAZHQI35KNZNfw9oB03oA2gIR0CqLe0163RYdX2UKGgGR0COmS5uIhyKaAdN6ANoCEdAqjGjrPdEcHV9lChoBkdAkGnKPXCj12gHTegDaAhHQKo44DpTuOV1fZQoaAZHQIkjoJeE7GNoB03oA2gIR0CqOTjpcHGCdX2UKGgGR0CLnFPyCnP3aAdN6ANoCEdAqjph7TlT33V9lChoBkdAhbpuzhP0qmgHTegDaAhHQKo+eOXE61d1fZQoaAZHQJTZuF23azxoB03oA2gIR0CqRtO2RaHLdX2UKGgGR0CXTBvvjOs1aAdN6ANoCEdAqkcwHoouw3V9lChoBkdAlPR6hlDneWgHTegDaAhHQKpIYLMLWqd1fZQoaAZHQJexp39rGipoB03oA2gIR0CqTBLcKw6idX2UKGgGR0CUwcDmKZUlaAdN6ANoCEdAqlMvukUKzHV9lChoBkdAl/eaa1Cw8mgHTegDaAhHQKpTkZMtbs51fZQoaAZHQJfKlbC79Q5oB03oA2gIR0CqVLOx0MgEdX2UKGgGR0CV2ET850bMaAdN6ANoCEdAqlmMRzzVc3V9lChoBkdAkXDXUlRgqmgHTegDaAhHQKphN+3H7xd1fZQoaAZHQJbSqoS+QEJoB03oA2gIR0CqYZQFLWZrdX2UKGgGR0B+q2LuQZGbaAdN6ANoCEdAqmK7mjj7ynV9lChoBkdAisDyVnmJWWgHTegDaAhHQKpmZ6sySFJ1fZQoaAZHQJQT2jZcs19oB03oA2gIR0CqbY/W+XZ5dX2UKGgGR0CWJnPDpC8faAdN6ANoCEdAqm3oPZqVQnV9lChoBkdAlgMWQCCBgGgHTegDaAhHQKpvBQxesxR1fZQoaAZHQJVAV8jRlYloB03oA2gIR0CqdGoDgZTAdX2UKGgGR0CWB8Axzq8laAdN6ANoCEdAqnuELfDUE3V9lChoBkdAlax88cMmW2gHTegDaAhHQKp739ZzPrx1fZQoaAZHQJIZDRUm2LJoB03oA2gIR0CqfQQtz0YkdX2UKGgGR0CW0Y6ltTDPaAdN6ANoCEdAqoDErqdH2HV9lChoBkdAlw4MfFJg9mgHTegDaAhHQKqH2ggX/HZ1fZQoaAZHQJPSxqveP7xoB03oA2gIR0CqiDgEEC/5dX2UKGgGR0CV2My6MBIXaAdN6ANoCEdAqonQL9deIHV9lChoBkdAlkeZeJHiFWgHTegDaAhHQKqOwACnxax1fZQoaAZHQJbC18Rcu8NoB03oA2gIR0Cqld+enQ6ZdX2UKGgGR0CJKo4m1IAfaAdN6ANoCEdAqpY+knCwbHV9lChoBkdAkvoCQcPvrmgHTegDaAhHQKqXaEMb3oN1fZQoaAZHQJYz2wRoRI1oB03oA2gIR0CqmwF+Vkc0dX2UKGgGR0CTqyjEvTPTaAdN6ANoCEdAqqJgQWepXXV9lChoBkdAk+gOAmReTmgHTegDaAhHQKqi6BZpztF1fZQoaAZHQJS1hIvrWy1oB03oA2gIR0CqpJlMh5gPdX2UKGgGR0CVmg5p8F6iaAdN6ANoCEdAqqkQHzH0b3V9lChoBkdAkUMZeJHiFWgHTegDaAhHQKqwMQdS2ph1fZQoaAZHQJF67Nt65XloB03oA2gIR0CqsInYQJ5WdX2UKGgGR0CScim0mdAgaAdN6ANoCEdAqrGoE8q4IHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}