File size: 13,119 Bytes
030b8f1 |
1 |
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x78f2fa694b80>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78f2fa694c10>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78f2fa694ca0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78f2fa694d30>", "_build": "<function ActorCriticPolicy._build at 0x78f2fa694dc0>", "forward": "<function ActorCriticPolicy.forward at 0x78f2fa694e50>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x78f2fa694ee0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78f2fa694f70>", "_predict": "<function ActorCriticPolicy._predict at 0x78f2fa695000>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78f2fa695090>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78f2fa695120>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x78f2fa6951b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x78f2fa61fa40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1711248297495592015, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAFKzq76j+VE/bhIfvhMypb4M1ym+MNPkOwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQC/mrGR3eN2MAWyUTRIBjAF0lEdAmqz89B8hLXV9lChoBkdAcIzW8yvcJ2gHTZgBaAhHQJqvUTRIBil1fZQoaAZHQG/A8rZrYXhoB00uAWgIR0CasPrBCUosdX2UKGgGR0A7wT7l7tzCaAdL9mgIR0Cas4kmx+rmdX2UKGgGR0BxHMhW5paiaAdNyQFoCEdAmrYVId2gWnV9lChoBkdAby4DbrTpgWgHTVYBaAhHQJq5KvfTCtR1fZQoaAZHQG3Mr5hz/6xoB02pAmgIR0CavRPGACnxdX2UKGgGR0Br31OsT37DaAdNjgFoCEdAmsCJCjUNKHV9lChoBkdAcFHdp7CzkmgHTX4BaAhHQJrCwWTHKfZ1fZQoaAZHQHHpEfHPu5VoB014AWgIR0CaxN/4qPOqdX2UKGgGR0BxygwXZXdTaAdNrQFoCEdAmsh7PIGQjnV9lChoBkdAbaurQPZqVWgHTZ8BaAhHQJrLDc9GI9F1fZQoaAZHQG5s57XxvvVoB016AWgIR0CazcKYAsCldX2UKGgGR0BtK4dQwblzaAdNZQFoCEdAmtIrCSA6MnV9lChoBkdAbQy9mHxjKGgHTf4BaAhHQJrVBL127nR1fZQoaAZHQHElmWhRIjJoB03UAWgIR0Ca2OFQEZBLdX2UKGgGR0Bx0viwSrYHaAdNSQFoCEdAmtq35vcafnV9lChoBkdAcRkc4o7V8WgHTV0BaAhHQJrcr8GcFyJ1fZQoaAZHQFKFRTCLuQZoB0vlaAhHQJrfKGATZg51fZQoaAZHQGLQ+eWfK6poB03oA2gIR0Ca5hJ4jbBXdX2UKGgGR0Bt8bpqynk1aAdNVQFoCEdAmugMdLg4wXV9lChoBkdAbaJmmLtNSWgHTZUBaAhHQJrqYHGCI1t1fZQoaAZHQHFfOWGATZhoB006AWgIR0Ca7Z150KZ2dX2UKGgGR0BwWQ6T4cm0aAdNewFoCEdAmu/IYekpJHV9lChoBkdATatW+49X92gHTTIBaAhHQJrxit6ol2N1fZQoaAZHQG5n8rAgxJxoB013AWgIR0Ca9PzqrzXjdX2UKGgGR0A/vkMkQf6oaAdL9GgIR0Ca9mi1y/9HdX2UKGgGR0BvGqHoHLRsaAdNXAFoCEdAmvhq2nbZe3V9lChoBkdAcKS96kZaV2gHTV8BaAhHQJr8K5vtMPB1fZQoaAZHQGI/kTpPhydoB03oA2gIR0CbBGfVqesgdX2UKGgGR0BwB1EDyOJdaAdNcwFoCEdAmwao42jwhHV9lChoBkdAcZ5mqHXVb2gHTeUCaAhHQJsMH2tdRix1fZQoaAZHQHF7dn003wVoB035AmgIR0CbEHPJJXhgdX2UKGgGR0Bs9svGp++eaAdNZgFoCEdAmxOvAwfyPXV9lChoBkdAUDk84gieNGgHS+RoCEdAmxTsh1Tzd3V9lChoBkdAcIW1SwW30GgHTXgBaAhHQJsW/7/GVA11fZQoaAZHQHCZa9CeEqVoB01DAWgIR0CbGgZ88cMmdX2UKGgGR0BwkBFTefqYaAdNpwFoCEdAmxxgb6xgRnV9lChoBkdAcYmipvP1MGgHTU4BaAhHQJseP/zasZJ1fZQoaAZHQGsjotcv/R5oB015AWgIR0CbIZJcgQpXdX2UKGgGR0Bv2/7SApazaAdNKQFoCEdAmyMzw2ETQHV9lChoBkdAcKfbT+ee4GgHTUsBaAhHQJslCJLuhK11fZQoaAZHQG/2rfcer+5oB03aAWgIR0CbKNpPAO8TdX2UKGgGR0BBDq7qY7aJaAdNHAFoCEdAmyr9rTH80nV9lChoBkdAcBrWp6yB1GgHTU4BaAhHQJstUjD8+A51fZQoaAZHQHBkGxt52QpoB01OAWgIR0CbMTyGBWgfdX2UKGgGR0BwN+wB5ooNaAdNdwFoCEdAmzNQ04zabnV9lChoBkdAbYeRXfZVXGgHTVIBaAhHQJs2baufVZt1fZQoaAZHQG+/JB5X2dxoB01sAWgIR0CbOImUnogWdX2UKGgGR0Bxyu7Wd3B6aAdNNAFoCEdAmzpC5mRNh3V9lChoBkdAQa74Ju2qk2gHS+hoCEdAmzuJyIYWL3V9lChoBkdAcBCcUM5OrWgHTVIBaAhHQJs+nOlfqot1fZQoaAZHQG94elbeMydoB01nAWgIR0CbQIzUI9kjdX2UKGgGR0BwZwrGza9LaAdNfQFoCEdAm0KxuKoAGXV9lChoBkdAa91R1oxpL2gHTToBaAhHQJtFmm51/2F1fZQoaAZHQEpJMC9ytFNoB0vuaAhHQJtG8BT4tYl1fZQoaAZHQHDa27OE/SpoB01kAWgIR0CbSOb3XZoPdX2UKGgGR0BDOyIYWLxaaAdL72gIR0CbS2vzOHFhdX2UKGgGR0BuxP+2mYShaAdNfgFoCEdAm02Gi+L3sXV9lChoBkdAclRokzGgjGgHTUkBaAhHQJtPaSKWLP51fZQoaAZHQHBRq3d9Dx9oB010AWgIR0CbUrOD8LrpdX2UKGgGR0BvsVH4GlhxaAdNZQFoCEdAm1Sk5+6RQ3V9lChoBkdASLLiOvMbFWgHTScBaAhHQJtWSHWSU1R1fZQoaAZHQHBhR9gF5fNoB01FAWgIR0CbWbSyMUAUdX2UKGgGR0Bt7imO2iL3aAdNQgFoCEdAm1vz/ACW/3V9lChoBkdAbtMYLsrupmgHTYsBaAhHQJtfEejmCAd1fZQoaAZHQHHXLk4m1IBoB01MAWgIR0CbYileF+NMdX2UKGgGR0BwD5bTtsvaaAdNgAFoCEdAm2RwDvE0i3V9lChoBkdAb5/jx0+1SmgHTVMBaAhHQJtmXE9+w1R1fZQoaAZHQDLoDgZTAFhoB00EAWgIR0CbaQplSS/1dX2UKGgGR0BsqlU+9rXUaAdNNgFoCEdAm2rO4kNWl3V9lChoBkdAbEH0Rvm5lWgHTXkBaAhHQJts7gpBomJ1fZQoaAZHQG/ULh73PAxoB01cAWgIR0CbcArRjSXudX2UKGgGR0Bv+CgsbvPUaAdNHAFoCEdAm3GtFSbYsnV9lChoBkdAcOLANoakymgHTUYBaAhHQJtzbyauwHJ1fZQoaAZHQG/kmbb1yvNoB00oAWgIR0CbdRIcinpCdX2UKGgGR0BwM8bXHzYmaAdNhwFoCEdAm3h8HjZL7HV9lChoBkdARs31pTMq0GgHS/ZoCEdAm3nYsEq2B3V9lChoBkdAciQhLGrCFmgHTRkBaAhHQJt7XuF6Avt1fZQoaAZHQHDdlQMx46hoB00rAWgIR0CbfkQj2SMcdX2UKGgGR0BxGjt/nW8RaAdNkAFoCEdAm4CJ22XsxHV9lChoBkdALCzVtoBaLWgHTQABaAhHQJuB8URFqi51fZQoaAZHQHBM10Lc9GJoB01HAWgIR0CbhO6SDAaedX2UKGgGR0BwQG6Gxlg/aAdNhAFoCEdAm4cR4D9wWHV9lChoBkdAcXoxLkCFK2gHTVYBaAhHQJuJkgdOqNp1fZQoaAZHQEe3yGzru6VoB0v1aAhHQJuM+RW912d1fZQoaAZHQHLQWCiAUcpoB01ZAWgIR0Cbj1m5DqnndX2UKGgGR0BOEVf/m1YyaAdL+GgIR0CbkLVNYbKidX2UKGgGR0Bx90rwvxpdaAdNXwFoCEdAm5Ka/yoXK3V9lChoBkdAchYk5p8F6mgHTWQBaAhHQJuVykxh2GJ1fZQoaAZHQHDw/YSQHRloB00fAWgIR0Cbl1lJpWWAdX2UKGgGR0BuhibUgB91aAdNQQFoCEdAm5knRgJC0HV9lChoBkdAcK2kT6BRRGgHTU0BaAhHQJucKC2+fyx1fZQoaAZHQDtCJMxoIv9oB0vLaAhHQJudT3ai9Ix1fZQoaAZHQHAx1HjIaLpoB00qAWgIR0CbnvMkQf6odX2UKGgGR0Beu7x3FDOUaAdN6ANoCEdAm6XMf/3nIXV9lChoBkdAcLTrVe8f3mgHTUEBaAhHQJuotwxWT5h1fZQoaAZHQEAPCFbmlqJoB0vdaAhHQJuqD7655JN1fZQoaAZHQG+qZEDyOJdoB01IAWgIR0Cbq9butwJgdX2UKGgGR0BwUohhYvFnaAdNZAFoCEdAm63Vjy4FzXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3908, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |