Naveen20o1 commited on
Commit
092d1ab
1 Parent(s): 5c9c595

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,518 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: []
3
+ library_name: sentence-transformers
4
+ tags:
5
+ - sentence-transformers
6
+ - sentence-similarity
7
+ - feature-extraction
8
+ - generated_from_trainer
9
+ - dataset_size:900
10
+ - loss:CoSENTLoss
11
+ base_model: sentence-transformers/all-MiniLM-L6-v2
12
+ datasets: []
13
+ metrics:
14
+ - pearson_cosine
15
+ - spearman_cosine
16
+ - pearson_manhattan
17
+ - spearman_manhattan
18
+ - pearson_euclidean
19
+ - spearman_euclidean
20
+ - pearson_dot
21
+ - spearman_dot
22
+ - pearson_max
23
+ - spearman_max
24
+ widget:
25
+ - source_sentence: display
26
+ sentences:
27
+ - Geographical
28
+ - Communication
29
+ - Artifact
30
+ - source_sentence: expense
31
+ sentences:
32
+ - Artifact
33
+ - Time
34
+ - Geographical
35
+ - source_sentence: area
36
+ sentences:
37
+ - Communication
38
+ - Organization
39
+ - Quantity
40
+ - source_sentence: test_result
41
+ sentences:
42
+ - Time
43
+ - Geographical
44
+ - Time
45
+ - source_sentence: legal_guardian
46
+ sentences:
47
+ - Artifact
48
+ - Person
49
+ - Person
50
+ pipeline_tag: sentence-similarity
51
+ model-index:
52
+ - name: SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
53
+ results:
54
+ - task:
55
+ type: semantic-similarity
56
+ name: Semantic Similarity
57
+ dataset:
58
+ name: sts dev
59
+ type: sts-dev
60
+ metrics:
61
+ - type: pearson_cosine
62
+ value: 0.8510927039014685
63
+ name: Pearson Cosine
64
+ - type: spearman_cosine
65
+ value: 0.8372741864830964
66
+ name: Spearman Cosine
67
+ - type: pearson_manhattan
68
+ value: 0.8233071371304348
69
+ name: Pearson Manhattan
70
+ - type: spearman_manhattan
71
+ value: 0.8391989547278852
72
+ name: Spearman Manhattan
73
+ - type: pearson_euclidean
74
+ value: 0.8236213734557936
75
+ name: Pearson Euclidean
76
+ - type: spearman_euclidean
77
+ value: 0.8372741864830964
78
+ name: Spearman Euclidean
79
+ - type: pearson_dot
80
+ value: 0.8510927021851241
81
+ name: Pearson Dot
82
+ - type: spearman_dot
83
+ value: 0.8372741864830964
84
+ name: Spearman Dot
85
+ - type: pearson_max
86
+ value: 0.8510927039014685
87
+ name: Pearson Max
88
+ - type: spearman_max
89
+ value: 0.8391989547278852
90
+ name: Spearman Max
91
+ - task:
92
+ type: semantic-similarity
93
+ name: Semantic Similarity
94
+ dataset:
95
+ name: sts dev test
96
+ type: sts-dev_test
97
+ metrics:
98
+ - type: pearson_cosine
99
+ value: 0.8296374742898318
100
+ name: Pearson Cosine
101
+ - type: spearman_cosine
102
+ value: 0.8280786712108251
103
+ name: Spearman Cosine
104
+ - type: pearson_manhattan
105
+ value: 0.8056178202972799
106
+ name: Pearson Manhattan
107
+ - type: spearman_manhattan
108
+ value: 0.8280786712108251
109
+ name: Spearman Manhattan
110
+ - type: pearson_euclidean
111
+ value: 0.811720698434899
112
+ name: Pearson Euclidean
113
+ - type: spearman_euclidean
114
+ value: 0.8280786712108251
115
+ name: Spearman Euclidean
116
+ - type: pearson_dot
117
+ value: 0.829637493696392
118
+ name: Pearson Dot
119
+ - type: spearman_dot
120
+ value: 0.8280786712108251
121
+ name: Spearman Dot
122
+ - type: pearson_max
123
+ value: 0.829637493696392
124
+ name: Pearson Max
125
+ - type: spearman_max
126
+ value: 0.8280786712108251
127
+ name: Spearman Max
128
+ ---
129
+
130
+ # SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
131
+
132
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
133
+
134
+ ## Model Details
135
+
136
+ ### Model Description
137
+ - **Model Type:** Sentence Transformer
138
+ - **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision 8b3219a92973c328a8e22fadcfa821b5dc75636a -->
139
+ - **Maximum Sequence Length:** 256 tokens
140
+ - **Output Dimensionality:** 384 tokens
141
+ - **Similarity Function:** Cosine Similarity
142
+ <!-- - **Training Dataset:** Unknown -->
143
+ <!-- - **Language:** Unknown -->
144
+ <!-- - **License:** Unknown -->
145
+
146
+ ### Model Sources
147
+
148
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
149
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
150
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
151
+
152
+ ### Full Model Architecture
153
+
154
+ ```
155
+ SentenceTransformer(
156
+ (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
157
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
158
+ (2): Normalize()
159
+ )
160
+ ```
161
+
162
+ ## Usage
163
+
164
+ ### Direct Usage (Sentence Transformers)
165
+
166
+ First install the Sentence Transformers library:
167
+
168
+ ```bash
169
+ pip install -U sentence-transformers
170
+ ```
171
+
172
+ Then you can load this model and run inference.
173
+ ```python
174
+ from sentence_transformers import SentenceTransformer
175
+
176
+ # Download from the 🤗 Hub
177
+ model = SentenceTransformer("Naveen20o1/all_MiniLM_L6_nav1")
178
+ # Run inference
179
+ sentences = [
180
+ 'legal_guardian',
181
+ 'Person',
182
+ 'Person',
183
+ ]
184
+ embeddings = model.encode(sentences)
185
+ print(embeddings.shape)
186
+ # [3, 384]
187
+
188
+ # Get the similarity scores for the embeddings
189
+ similarities = model.similarity(embeddings, embeddings)
190
+ print(similarities.shape)
191
+ # [3, 3]
192
+ ```
193
+
194
+ <!--
195
+ ### Direct Usage (Transformers)
196
+
197
+ <details><summary>Click to see the direct usage in Transformers</summary>
198
+
199
+ </details>
200
+ -->
201
+
202
+ <!--
203
+ ### Downstream Usage (Sentence Transformers)
204
+
205
+ You can finetune this model on your own dataset.
206
+
207
+ <details><summary>Click to expand</summary>
208
+
209
+ </details>
210
+ -->
211
+
212
+ <!--
213
+ ### Out-of-Scope Use
214
+
215
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
216
+ -->
217
+
218
+ ## Evaluation
219
+
220
+ ### Metrics
221
+
222
+ #### Semantic Similarity
223
+ * Dataset: `sts-dev`
224
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
225
+
226
+ | Metric | Value |
227
+ |:--------------------|:-----------|
228
+ | pearson_cosine | 0.8511 |
229
+ | **spearman_cosine** | **0.8373** |
230
+ | pearson_manhattan | 0.8233 |
231
+ | spearman_manhattan | 0.8392 |
232
+ | pearson_euclidean | 0.8236 |
233
+ | spearman_euclidean | 0.8373 |
234
+ | pearson_dot | 0.8511 |
235
+ | spearman_dot | 0.8373 |
236
+ | pearson_max | 0.8511 |
237
+ | spearman_max | 0.8392 |
238
+
239
+ #### Semantic Similarity
240
+ * Dataset: `sts-dev_test`
241
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
242
+
243
+ | Metric | Value |
244
+ |:--------------------|:-----------|
245
+ | pearson_cosine | 0.8296 |
246
+ | **spearman_cosine** | **0.8281** |
247
+ | pearson_manhattan | 0.8056 |
248
+ | spearman_manhattan | 0.8281 |
249
+ | pearson_euclidean | 0.8117 |
250
+ | spearman_euclidean | 0.8281 |
251
+ | pearson_dot | 0.8296 |
252
+ | spearman_dot | 0.8281 |
253
+ | pearson_max | 0.8296 |
254
+ | spearman_max | 0.8281 |
255
+
256
+ <!--
257
+ ## Bias, Risks and Limitations
258
+
259
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
260
+ -->
261
+
262
+ <!--
263
+ ### Recommendations
264
+
265
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
266
+ -->
267
+
268
+ ## Training Details
269
+
270
+ ### Training Dataset
271
+
272
+ #### Unnamed Dataset
273
+
274
+
275
+ * Size: 900 training samples
276
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
277
+ * Approximate statistics based on the first 1000 samples:
278
+ | | sentence1 | sentence2 | score |
279
+ |:--------|:--------------------------------------------------------------------------------|:-------------------------------------------------------------------------------|:---------------------------------------------------------------|
280
+ | type | string | string | float |
281
+ | details | <ul><li>min: 3 tokens</li><li>mean: 4.31 tokens</li><li>max: 7 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 3.0 tokens</li><li>max: 3 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.49</li><li>max: 1.0</li></ul> |
282
+ * Samples:
283
+ | sentence1 | sentence2 | score |
284
+ |:--------------------------------|:--------------------------|:-----------------|
285
+ | <code>reach</code> | <code>Quantity</code> | <code>1.0</code> |
286
+ | <code>manufacture_date</code> | <code>Time</code> | <code>1.0</code> |
287
+ | <code>participant_number</code> | <code>Geographical</code> | <code>0.0</code> |
288
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
289
+ ```json
290
+ {
291
+ "scale": 20.0,
292
+ "similarity_fct": "pairwise_cos_sim"
293
+ }
294
+ ```
295
+
296
+ ### Evaluation Dataset
297
+
298
+ #### Unnamed Dataset
299
+
300
+
301
+ * Size: 60 evaluation samples
302
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
303
+ * Approximate statistics based on the first 1000 samples:
304
+ | | sentence1 | sentence2 | score |
305
+ |:--------|:---------------------------------------------------------------------------------|:-------------------------------------------------------------------------------|:--------------------------------------------------------------|
306
+ | type | string | string | float |
307
+ | details | <ul><li>min: 3 tokens</li><li>mean: 4.42 tokens</li><li>max: 10 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 3.0 tokens</li><li>max: 3 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.5</li><li>max: 1.0</li></ul> |
308
+ * Samples:
309
+ | sentence1 | sentence2 | score |
310
+ |:-----------------------------|:---------------------------|:-----------------|
311
+ | <code>tax_amount</code> | <code>Communication</code> | <code>0.0</code> |
312
+ | <code>territory</code> | <code>Geographical</code> | <code>1.0</code> |
313
+ | <code>employment_date</code> | <code>Geographical</code> | <code>0.0</code> |
314
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
315
+ ```json
316
+ {
317
+ "scale": 20.0,
318
+ "similarity_fct": "pairwise_cos_sim"
319
+ }
320
+ ```
321
+
322
+ ### Training Hyperparameters
323
+ #### Non-Default Hyperparameters
324
+
325
+ - `eval_strategy`: steps
326
+ - `per_device_train_batch_size`: 16
327
+ - `per_device_eval_batch_size`: 16
328
+ - `learning_rate`: 2e-05
329
+ - `num_train_epochs`: 11
330
+ - `warmup_ratio`: 0.1
331
+ - `fp16`: True
332
+
333
+ #### All Hyperparameters
334
+ <details><summary>Click to expand</summary>
335
+
336
+ - `overwrite_output_dir`: False
337
+ - `do_predict`: False
338
+ - `eval_strategy`: steps
339
+ - `prediction_loss_only`: True
340
+ - `per_device_train_batch_size`: 16
341
+ - `per_device_eval_batch_size`: 16
342
+ - `per_gpu_train_batch_size`: None
343
+ - `per_gpu_eval_batch_size`: None
344
+ - `gradient_accumulation_steps`: 1
345
+ - `eval_accumulation_steps`: None
346
+ - `learning_rate`: 2e-05
347
+ - `weight_decay`: 0.0
348
+ - `adam_beta1`: 0.9
349
+ - `adam_beta2`: 0.999
350
+ - `adam_epsilon`: 1e-08
351
+ - `max_grad_norm`: 1.0
352
+ - `num_train_epochs`: 11
353
+ - `max_steps`: -1
354
+ - `lr_scheduler_type`: linear
355
+ - `lr_scheduler_kwargs`: {}
356
+ - `warmup_ratio`: 0.1
357
+ - `warmup_steps`: 0
358
+ - `log_level`: passive
359
+ - `log_level_replica`: warning
360
+ - `log_on_each_node`: True
361
+ - `logging_nan_inf_filter`: True
362
+ - `save_safetensors`: True
363
+ - `save_on_each_node`: False
364
+ - `save_only_model`: False
365
+ - `restore_callback_states_from_checkpoint`: False
366
+ - `no_cuda`: False
367
+ - `use_cpu`: False
368
+ - `use_mps_device`: False
369
+ - `seed`: 42
370
+ - `data_seed`: None
371
+ - `jit_mode_eval`: False
372
+ - `use_ipex`: False
373
+ - `bf16`: False
374
+ - `fp16`: True
375
+ - `fp16_opt_level`: O1
376
+ - `half_precision_backend`: auto
377
+ - `bf16_full_eval`: False
378
+ - `fp16_full_eval`: False
379
+ - `tf32`: None
380
+ - `local_rank`: 0
381
+ - `ddp_backend`: None
382
+ - `tpu_num_cores`: None
383
+ - `tpu_metrics_debug`: False
384
+ - `debug`: []
385
+ - `dataloader_drop_last`: False
386
+ - `dataloader_num_workers`: 0
387
+ - `dataloader_prefetch_factor`: None
388
+ - `past_index`: -1
389
+ - `disable_tqdm`: False
390
+ - `remove_unused_columns`: True
391
+ - `label_names`: None
392
+ - `load_best_model_at_end`: False
393
+ - `ignore_data_skip`: False
394
+ - `fsdp`: []
395
+ - `fsdp_min_num_params`: 0
396
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
397
+ - `fsdp_transformer_layer_cls_to_wrap`: None
398
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
399
+ - `deepspeed`: None
400
+ - `label_smoothing_factor`: 0.0
401
+ - `optim`: adamw_torch
402
+ - `optim_args`: None
403
+ - `adafactor`: False
404
+ - `group_by_length`: False
405
+ - `length_column_name`: length
406
+ - `ddp_find_unused_parameters`: None
407
+ - `ddp_bucket_cap_mb`: None
408
+ - `ddp_broadcast_buffers`: False
409
+ - `dataloader_pin_memory`: True
410
+ - `dataloader_persistent_workers`: False
411
+ - `skip_memory_metrics`: True
412
+ - `use_legacy_prediction_loop`: False
413
+ - `push_to_hub`: False
414
+ - `resume_from_checkpoint`: None
415
+ - `hub_model_id`: None
416
+ - `hub_strategy`: every_save
417
+ - `hub_private_repo`: False
418
+ - `hub_always_push`: False
419
+ - `gradient_checkpointing`: False
420
+ - `gradient_checkpointing_kwargs`: None
421
+ - `include_inputs_for_metrics`: False
422
+ - `eval_do_concat_batches`: True
423
+ - `fp16_backend`: auto
424
+ - `push_to_hub_model_id`: None
425
+ - `push_to_hub_organization`: None
426
+ - `mp_parameters`:
427
+ - `auto_find_batch_size`: False
428
+ - `full_determinism`: False
429
+ - `torchdynamo`: None
430
+ - `ray_scope`: last
431
+ - `ddp_timeout`: 1800
432
+ - `torch_compile`: False
433
+ - `torch_compile_backend`: None
434
+ - `torch_compile_mode`: None
435
+ - `dispatch_batches`: None
436
+ - `split_batches`: None
437
+ - `include_tokens_per_second`: False
438
+ - `include_num_input_tokens_seen`: False
439
+ - `neftune_noise_alpha`: None
440
+ - `optim_target_modules`: None
441
+ - `batch_eval_metrics`: False
442
+ - `batch_sampler`: batch_sampler
443
+ - `multi_dataset_batch_sampler`: proportional
444
+
445
+ </details>
446
+
447
+ ### Training Logs
448
+ | Epoch | Step | Training Loss | loss | sts-dev_spearman_cosine | sts-dev_test_spearman_cosine |
449
+ |:-------:|:----:|:-------------:|:------:|:-----------------------:|:----------------------------:|
450
+ | 0.8772 | 50 | 3.4043 | - | - | - |
451
+ | 1.7544 | 100 | 1.7413 | 1.4082 | 0.8373 | - |
452
+ | 2.6316 | 150 | 0.6863 | - | - | - |
453
+ | 3.5088 | 200 | 0.4264 | 0.6584 | 0.8392 | - |
454
+ | 4.3860 | 250 | 0.0927 | - | - | - |
455
+ | 5.2632 | 300 | 0.1547 | 0.5512 | 0.8411 | - |
456
+ | 6.1404 | 350 | 0.042 | - | - | - |
457
+ | 7.0175 | 400 | 0.0422 | 0.5881 | 0.8392 | - |
458
+ | 7.8947 | 450 | 0.0484 | - | - | - |
459
+ | 8.7719 | 500 | 0.0506 | 0.6854 | 0.8353 | - |
460
+ | 9.6491 | 550 | 0.0105 | - | - | - |
461
+ | 10.5263 | 600 | 0.0039 | 0.6157 | 0.8373 | - |
462
+ | 11.0 | 627 | - | - | - | 0.8281 |
463
+
464
+
465
+ ### Framework Versions
466
+ - Python: 3.10.12
467
+ - Sentence Transformers: 3.0.1
468
+ - Transformers: 4.41.2
469
+ - PyTorch: 2.3.0+cu121
470
+ - Accelerate: 0.31.0
471
+ - Datasets: 2.20.0
472
+ - Tokenizers: 0.19.1
473
+
474
+ ## Citation
475
+
476
+ ### BibTeX
477
+
478
+ #### Sentence Transformers
479
+ ```bibtex
480
+ @inproceedings{reimers-2019-sentence-bert,
481
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
482
+ author = "Reimers, Nils and Gurevych, Iryna",
483
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
484
+ month = "11",
485
+ year = "2019",
486
+ publisher = "Association for Computational Linguistics",
487
+ url = "https://arxiv.org/abs/1908.10084",
488
+ }
489
+ ```
490
+
491
+ #### CoSENTLoss
492
+ ```bibtex
493
+ @online{kexuefm-8847,
494
+ title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
495
+ author={Su Jianlin},
496
+ year={2022},
497
+ month={Jan},
498
+ url={https://kexue.fm/archives/8847},
499
+ }
500
+ ```
501
+
502
+ <!--
503
+ ## Glossary
504
+
505
+ *Clearly define terms in order to be accessible across audiences.*
506
+ -->
507
+
508
+ <!--
509
+ ## Model Card Authors
510
+
511
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
512
+ -->
513
+
514
+ <!--
515
+ ## Model Card Contact
516
+
517
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
518
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/all-MiniLM-L6-v2",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 6,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.41.2",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.3.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9629afc57336a577d864a1d39e93b01a346a69f1cea7bd24c86df9ad6da23606
3
+ size 90864192
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 256,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "max_length": 128,
50
+ "model_max_length": 256,
51
+ "never_split": null,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "[PAD]",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "[SEP]",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "[UNK]"
64
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff