NazmusAshrafi commited on
Commit
11238cf
1 Parent(s): 645db96

Add SetFit ABSA model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md CHANGED
@@ -1,3 +1,218 @@
1
  ---
2
- license: mit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ library_name: setfit
3
+ tags:
4
+ - setfit
5
+ - absa
6
+ - sentence-transformers
7
+ - text-classification
8
+ - generated_from_setfit_trainer
9
+ metrics:
10
+ - accuracy
11
+ widget:
12
+ - text: The food at Cafe Asean:The food at Cafe Asean is to die for, and the prices
13
+ are unmatchable.
14
+ - text: its a cool place to come with:its a cool place to come with a bunch of people
15
+ or with a date for maybe a mild dinner or some drinks.
16
+ - text: times, the food is always good:Although the service can be a bit brusque at
17
+ times, the food is always good, hearty and hot.
18
+ - text: we found the food to be so:Came recommended to us, but we found the food to
19
+ be so-so, the service good, but we were told we could not order desert since the
20
+ table we were at had a reservation waiting.
21
+ - text: warned that this place can get pretty:Be warned that this place can get pretty
22
+ crowded, though the $3 bloody mary's at the bar and the killer DJ make the wait
23
+ more than bearable.
24
+ pipeline_tag: text-classification
25
+ inference: false
26
+ base_model: sentence-transformers/paraphrase-mpnet-base-v2
27
+ model-index:
28
+ - name: SetFit Polarity Model with sentence-transformers/paraphrase-mpnet-base-v2
29
+ results:
30
+ - task:
31
+ type: text-classification
32
+ name: Text Classification
33
+ dataset:
34
+ name: Unknown
35
+ type: unknown
36
+ split: test
37
+ metrics:
38
+ - type: accuracy
39
+ value: 0.45161290322580644
40
+ name: Accuracy
41
  ---
42
+
43
+ # SetFit Polarity Model with sentence-transformers/paraphrase-mpnet-base-v2
44
+
45
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Aspect Based Sentiment Analysis (ABSA). This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. In particular, this model is in charge of classifying aspect polarities.
46
+
47
+ The model has been trained using an efficient few-shot learning technique that involves:
48
+
49
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
50
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
51
+
52
+ This model was trained within the context of a larger system for ABSA, which looks like so:
53
+
54
+ 1. Use a spaCy model to select possible aspect span candidates.
55
+ 2. Use a SetFit model to filter these possible aspect span candidates.
56
+ 3. **Use this SetFit model to classify the filtered aspect span candidates.**
57
+
58
+ ## Model Details
59
+
60
+ ### Model Description
61
+ - **Model Type:** SetFit
62
+ - **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
63
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
64
+ - **spaCy Model:** en_core_web_lg
65
+ - **SetFitABSA Aspect Model:** [NazmusAshrafi/mams-ds-setfit-MiniLM-mpnet-absa-tesla-tweet-aspect](https://huggingface.co/NazmusAshrafi/mams-ds-setfit-MiniLM-mpnet-absa-tesla-tweet-aspect)
66
+ - **SetFitABSA Polarity Model:** [NazmusAshrafi/mams-ds-setfit-MiniLM-mpnet-absa-tesla-tweet-polarity](https://huggingface.co/NazmusAshrafi/mams-ds-setfit-MiniLM-mpnet-absa-tesla-tweet-polarity)
67
+ - **Maximum Sequence Length:** 512 tokens
68
+ - **Number of Classes:** 3 classes
69
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
70
+ <!-- - **Language:** Unknown -->
71
+ <!-- - **License:** Unknown -->
72
+
73
+ ### Model Sources
74
+
75
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
76
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
77
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
78
+
79
+ ### Model Labels
80
+ | Label | Examples |
81
+ |:---------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
82
+ | positive | <ul><li>"best sit down food I've had:It might be the best sit down food I've had in the area, so if you are going to the upright citizen brigade, or the garden, it could be just the place for you."</li><li>'generous and the staff brings out multiple:Portions are fairly generous and the staff brings out multiple little bites and treats throughout dinner.'</li><li>'casual Middle Eastern menu looks familar,:The Food The casual Middle Eastern menu looks familar, but the food--made to order in the open kitchen--is a notch above its peers.'</li></ul> |
83
+ | neutral | <ul><li>"be just the place for you.:It might be the best sit down food I've had in the area, so if you are going to the upright citizen brigade, or the garden, it could be just the place for you."</li><li>') other food is served in:) other food is served in too-small portions, but at least it leaves room for dessert.'</li><li>"room while the food on other peoples:Upon entering, I was impressed by the room while the food on other peoples' tables seemed enticing."</li></ul> |
84
+ | negative | <ul><li>'Though the service might be a:Though the service might be a little slow, the waitresses are very friendly.'</li><li>'was expecting poor service and ambience but:After reading other reviews I was expecting poor service and ambience but was pleasantly surprised by our more than helpful waiter.'</li><li>'we found the food to be so:Came recommended to us, but we found the food to be so-so, the service good, but we were told we could not order desert since the table we were at had a reservation waiting.'</li></ul> |
85
+
86
+ ## Evaluation
87
+
88
+ ### Metrics
89
+ | Label | Accuracy |
90
+ |:--------|:---------|
91
+ | **all** | 0.4516 |
92
+
93
+ ## Uses
94
+
95
+ ### Direct Use for Inference
96
+
97
+ First install the SetFit library:
98
+
99
+ ```bash
100
+ pip install setfit
101
+ ```
102
+
103
+ Then you can load this model and run inference.
104
+
105
+ ```python
106
+ from setfit import AbsaModel
107
+
108
+ # Download from the 🤗 Hub
109
+ model = AbsaModel.from_pretrained(
110
+ "NazmusAshrafi/mams-ds-setfit-MiniLM-mpnet-absa-tesla-tweet-aspect",
111
+ "NazmusAshrafi/mams-ds-setfit-MiniLM-mpnet-absa-tesla-tweet-polarity",
112
+ )
113
+ # Run inference
114
+ preds = model("The food was great, but the venue is just way too busy.")
115
+ ```
116
+
117
+ <!--
118
+ ### Downstream Use
119
+
120
+ *List how someone could finetune this model on their own dataset.*
121
+ -->
122
+
123
+ <!--
124
+ ### Out-of-Scope Use
125
+
126
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
127
+ -->
128
+
129
+ <!--
130
+ ## Bias, Risks and Limitations
131
+
132
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
133
+ -->
134
+
135
+ <!--
136
+ ### Recommendations
137
+
138
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
139
+ -->
140
+
141
+ ## Training Details
142
+
143
+ ### Training Set Metrics
144
+ | Training set | Min | Median | Max |
145
+ |:-------------|:----|:--------|:----|
146
+ | Word count | 17 | 28.6364 | 53 |
147
+
148
+ | Label | Training Sample Count |
149
+ |:---------|:----------------------|
150
+ | negative | 10 |
151
+ | neutral | 12 |
152
+ | positive | 11 |
153
+
154
+ ### Training Hyperparameters
155
+ - batch_size: (16, 2)
156
+ - num_epochs: (1, 16)
157
+ - max_steps: -1
158
+ - sampling_strategy: oversampling
159
+ - body_learning_rate: (2e-05, 1e-05)
160
+ - head_learning_rate: 0.01
161
+ - loss: CosineSimilarityLoss
162
+ - distance_metric: cosine_distance
163
+ - margin: 0.25
164
+ - end_to_end: False
165
+ - use_amp: False
166
+ - warmup_proportion: 0.1
167
+ - seed: 42
168
+ - eval_max_steps: -1
169
+ - load_best_model_at_end: False
170
+
171
+ ### Training Results
172
+ | Epoch | Step | Training Loss | Validation Loss |
173
+ |:------:|:----:|:-------------:|:---------------:|
174
+ | 0.0217 | 1 | 0.2212 | - |
175
+
176
+ ### Framework Versions
177
+ - Python: 3.10.12
178
+ - SetFit: 1.0.3
179
+ - Sentence Transformers: 2.4.0
180
+ - spaCy: 3.7.4
181
+ - Transformers: 4.37.2
182
+ - PyTorch: 2.1.0+cu121
183
+ - Datasets: 2.17.1
184
+ - Tokenizers: 0.15.2
185
+
186
+ ## Citation
187
+
188
+ ### BibTeX
189
+ ```bibtex
190
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
191
+ doi = {10.48550/ARXIV.2209.11055},
192
+ url = {https://arxiv.org/abs/2209.11055},
193
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
194
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
195
+ title = {Efficient Few-Shot Learning Without Prompts},
196
+ publisher = {arXiv},
197
+ year = {2022},
198
+ copyright = {Creative Commons Attribution 4.0 International}
199
+ }
200
+ ```
201
+
202
+ <!--
203
+ ## Glossary
204
+
205
+ *Clearly define terms in order to be accessible across audiences.*
206
+ -->
207
+
208
+ <!--
209
+ ## Model Card Authors
210
+
211
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
212
+ -->
213
+
214
+ <!--
215
+ ## Model Card Contact
216
+
217
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
218
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/paraphrase-mpnet-base-v2",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.37.2",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.0.0",
4
+ "transformers": "4.7.0",
5
+ "pytorch": "1.9.0+cu102"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null
9
+ }
config_setfit.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "normalize_embeddings": false,
3
+ "span_context": 3,
4
+ "labels": [
5
+ "negative",
6
+ "neutral",
7
+ "positive"
8
+ ],
9
+ "spacy_model": "en_core_web_lg"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:81321acb890932cee0ece3a7d59b99bc2d85c36666e9191ccaee7586749e071d
3
+ size 437967672
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f2a997a8eb50568869f5551347102154d03e55212e6fbddee039d52719b3752b
3
+ size 19375
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "104": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "30526": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": true,
49
+ "eos_token": "</s>",
50
+ "mask_token": "<mask>",
51
+ "model_max_length": 512,
52
+ "never_split": null,
53
+ "pad_token": "<pad>",
54
+ "sep_token": "</s>",
55
+ "strip_accents": null,
56
+ "tokenize_chinese_chars": true,
57
+ "tokenizer_class": "MPNetTokenizer",
58
+ "unk_token": "[UNK]"
59
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff