File size: 11,644 Bytes
782fe2c
fb08ff8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
782fe2c
fb08ff8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
---
library_name: setfit
tags:
- setfit
- absa
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
metrics:
- accuracy
widget:
- text: 'feel the most confidence in is $:Ron Barron: We see so much potential, we
    don’t want to sell; Of all companies I cover & analysts come pitch to me,
    the company I feel the most confidence in is $TSLA; People think we''re going
    into a slowdown but demand for their cars has never been better.'
- text: 'surge! This Powerwall was underwater for:@TeslaSolar roof stood up to #HurricaneIan
    with 155mph winds and storm surge! This Powerwall was underwater for hours and
    is still working perfectly.'
- text: 'Guilty of overtrading in this aggressive:Guilty of overtrading in this aggressive
    price action. I’m far from perfect but I try my best to keep my losses small. '
- text: 'Creating huge opportunities for investors who:Creating huge opportunities
    for investors who can see past this rate hike cycle. Which should be over soon.
    #tesla $TSLA'
- text: 'Investing in the stock market was and never:Investing in the stock market
    was and never will be easy bc many throw in the white towel along the way, bc
    they panic. '
pipeline_tag: text-classification
inference: false
base_model: sentence-transformers/paraphrase-mpnet-base-v2
---

# SetFit Polarity Model with sentence-transformers/paraphrase-mpnet-base-v2

This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Aspect Based Sentiment Analysis (ABSA). This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. In particular, this model is in charge of classifying aspect polarities.

The model has been trained using an efficient few-shot learning technique that involves:

1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.

This model was trained within the context of a larger system for ABSA, which looks like so:

1. Use a spaCy model to select possible aspect span candidates.
2. Use a SetFit model to filter these possible aspect span candidates.
3. **Use this SetFit model to classify the filtered aspect span candidates.**

## Model Details

### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **spaCy Model:** en_core_web_lg
- **SetFitABSA Aspect Model:** [setfit-absa-aspect](https://huggingface.co/setfit-absa-aspect)
- **SetFitABSA Polarity Model:** [NazmusAshrafi/setfit-absa-sm-stock-tweet-sentiment](https://huggingface.co/NazmusAshrafi/setfit-absa-sm-stock-tweet-sentiment)
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 4 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)

### Model Labels
| Label    | Examples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|:---------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| negative | <ul><li>'But the staff was so horrible:But the staff was so horrible to us.'</li><li>'For years @WholeMarsBlog viciously silenced @Tesla:For years @WholeMarsBlog viciously silenced @Tesla critics. Failing to silence me, he desperately lashes out  with childish insults about me, my company, my products - and even my His fear and impotence spurs me on to ensure that everyone understands Full Self-Driving is Apple.'</li><li>"$NIO just because I:$NIO just because I'm down money doesn't mean this is a bad investment. The whole market, everything sucks right now. 2-5 years from now, I'm confident it will pay off."</li></ul>                                                                                                                                                 |
| neutral  | <ul><li>'-Driving is Apple.:For years @WholeMarsBlog viciously silenced @Tesla critics. Failing to silence me, he desperately lashes out  with childish insults about me, my company, my products - and even my His fear and impotence spurs me on to ensure that everyone understands Full Self-Driving is Apple.'</li><li>"adopt California's rules approved in August:New York state plans to adopt California's rules approved in August that would require all new vehicles sold in the state by 2035 to be either electric or plug-in electric hybrids."</li><li>"plug-in electric hybrids.:New York state plans to adopt California's rules approved in August that would require all new vehicles sold in the state by 2035 to be either electric or plug-in electric hybrids."</li></ul> |
| positive | <ul><li>'day! #Tesla #hawaii $:This makes my day! #Tesla #hawaii $TSLA'</li><li>'@TeslaSolar roof stood up:@TeslaSolar roof stood up to #HurricaneIan with 155mph winds and storm surge! This Powerwall was underwater for hours and is still working perfectly.'</li><li>'surge! This Powerwall was underwater for:@TeslaSolar roof stood up to #HurricaneIan with 155mph winds and storm surge! This Powerwall was underwater for hours and is still working perfectly.'</li></ul>                                                                                                                                                                                                                                                                                                              |
| neutral  | <ul><li>'Investing in the stock market was and never:Investing in the stock market was and never will be easy bc many throw in the white towel along the way, bc they panic. '</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

## Uses

### Direct Use for Inference

First install the SetFit library:

```bash
pip install setfit
```

Then you can load this model and run inference.

```python
from setfit import AbsaModel

# Download from the 🤗 Hub
model = AbsaModel.from_pretrained(
    "setfit-absa-aspect",
    "NazmusAshrafi/setfit-absa-sm-stock-tweet-sentiment",
)
# Run inference
preds = model("The food was great, but the venue is just way too busy.")
```

<!--
### Downstream Use

*List how someone could finetune this model on their own dataset.*
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set | Min | Median  | Max |
|:-------------|:----|:--------|:----|
| Word count   | 10  | 33.3333 | 60  |

| Label    | Training Sample Count |
|:---------|:----------------------|
| negative | 7                     |
| neutral  | 5                     |
| neutral  | 1                     |
| positive | 8                     |

### Training Hyperparameters
- batch_size: (16, 2)
- num_epochs: (1, 16)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False

### Training Results
| Epoch  | Step | Training Loss | Validation Loss |
|:------:|:----:|:-------------:|:---------------:|
| 0.0526 | 1    | 0.1621        | -               |

### Framework Versions
- Python: 3.10.12
- SetFit: 1.0.2
- Sentence Transformers: 2.2.2
- spaCy: 3.6.1
- Transformers: 4.35.2
- PyTorch: 2.1.0+cu121
- Datasets: 2.16.1
- Tokenizers: 0.15.0

## Citation

### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->