#!/usr/bin/env bash accelerate launch run_distillation.py \ --model_name_or_path "./end-of-training-weights" \ --teacher_model_name_or_path "NbAiLab/nb-whisper-large" \ --train_dataset_name "NbAiLab/annotated_distil_raw_ncc_speech_v7_large" \ --train_dataset_config_name "" \ --train_split_name "train" \ --eval_dataset_name "NbAiLab/ncc_speech_v7" \ --eval_dataset_config_name "" \ --eval_split_name "validation_norwegian_fleurs" \ --eval_steps 500 \ --save_steps 1000 \ --warmup_steps 1000 \ --learning_rate 0.00015 \ --lr_scheduler_type "linear" \ --timestamp_probability 0.2 \ --condition_on_prev_probability 0.2 \ --language "no" \ --task "transcribe" \ --logging_steps 200 \ --save_total_limit 1 \ --max_steps 50000 \ --wer_threshold 10 \ --per_device_train_batch_size 32 \ --per_device_eval_batch_size 32 \ --dataloader_num_workers 8 \ --preprocessing_num_workers 8 \ --ddp_timeout 7200 \ --dtype "bfloat16" \ --attn_implementation "sdpa" \ --output_dir "./" \ --do_train \ --do_eval \ --gradient_checkpointing \ --overwrite_output_dir \ --predict_with_generate \ --freeze_encoder \ --freeze_embed_positions \ --streaming True \ --wandb_project "nb-distil-whisper-large-fleurseval" \ --wandb_name "pytorch_lr3e4_wer10" \ --hub_model_id "NbAiLab/nb-distil-whisper-large-pytorch-wer1-recover33k-38-5k-decay-last50k" \ --push_to_hub