versae commited on
Commit
a6e6635
1 Parent(s): d4917e3

Training in progress, step 500

Browse files
added_tokens.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"<s>": 32, "</s>": 33}
config.json ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "facebook/wav2vec2-xls-r-300m",
3
+ "activation_dropout": 0.055,
4
+ "adapter_kernel_size": 3,
5
+ "adapter_stride": 2,
6
+ "add_adapter": false,
7
+ "apply_spec_augment": true,
8
+ "architectures": [
9
+ "Wav2Vec2ForCTC"
10
+ ],
11
+ "attention_dropout": 0.094,
12
+ "bos_token_id": 1,
13
+ "classifier_proj_size": 256,
14
+ "codevector_dim": 768,
15
+ "contrastive_logits_temperature": 0.1,
16
+ "conv_bias": true,
17
+ "conv_dim": [
18
+ 512,
19
+ 512,
20
+ 512,
21
+ 512,
22
+ 512,
23
+ 512,
24
+ 512
25
+ ],
26
+ "conv_kernel": [
27
+ 10,
28
+ 3,
29
+ 3,
30
+ 3,
31
+ 3,
32
+ 2,
33
+ 2
34
+ ],
35
+ "conv_stride": [
36
+ 5,
37
+ 2,
38
+ 2,
39
+ 2,
40
+ 2,
41
+ 2,
42
+ 2
43
+ ],
44
+ "ctc_loss_reduction": "mean",
45
+ "ctc_zero_infinity": false,
46
+ "diversity_loss_weight": 0.1,
47
+ "do_stable_layer_norm": true,
48
+ "eos_token_id": 2,
49
+ "feat_extract_activation": "gelu",
50
+ "feat_extract_dropout": 0.0,
51
+ "feat_extract_norm": "layer",
52
+ "feat_proj_dropout": 0.04,
53
+ "feat_quantizer_dropout": 0.0,
54
+ "final_dropout": 0.0,
55
+ "hidden_act": "gelu",
56
+ "hidden_dropout": 0.047,
57
+ "hidden_size": 1024,
58
+ "initializer_range": 0.02,
59
+ "intermediate_size": 4096,
60
+ "layer_norm_eps": 1e-05,
61
+ "layerdrop": 0.041,
62
+ "mask_feature_length": 64,
63
+ "mask_feature_min_masks": 0,
64
+ "mask_feature_prob": 0.25,
65
+ "mask_time_length": 10,
66
+ "mask_time_min_masks": 2,
67
+ "mask_time_prob": 0.082,
68
+ "model_type": "wav2vec2",
69
+ "num_adapter_layers": 3,
70
+ "num_attention_heads": 16,
71
+ "num_codevector_groups": 2,
72
+ "num_codevectors_per_group": 320,
73
+ "num_conv_pos_embedding_groups": 16,
74
+ "num_conv_pos_embeddings": 128,
75
+ "num_feat_extract_layers": 7,
76
+ "num_hidden_layers": 24,
77
+ "num_negatives": 100,
78
+ "output_hidden_size": 1024,
79
+ "pad_token_id": 31,
80
+ "proj_codevector_dim": 768,
81
+ "tdnn_dilation": [
82
+ 1,
83
+ 2,
84
+ 3,
85
+ 1,
86
+ 1
87
+ ],
88
+ "tdnn_dim": [
89
+ 512,
90
+ 512,
91
+ 512,
92
+ 512,
93
+ 1500
94
+ ],
95
+ "tdnn_kernel": [
96
+ 5,
97
+ 3,
98
+ 3,
99
+ 1,
100
+ 1
101
+ ],
102
+ "torch_dtype": "float32",
103
+ "transformers_version": "4.17.0.dev0",
104
+ "use_weighted_layer_sum": false,
105
+ "vocab_size": 34,
106
+ "xvector_output_dim": 512
107
+ }
preprocessor_config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_normalize": true,
3
+ "feature_extractor_type": "Wav2Vec2FeatureExtractor",
4
+ "feature_size": 1,
5
+ "padding_side": "right",
6
+ "padding_value": 0,
7
+ "return_attention_mask": true,
8
+ "sampling_rate": 16000
9
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:efe5fcb4c710a0fedd9cf02a9cf6d9fd0c77277794572a6a2227cf55c99c2b24
3
+ size 1262063089
runs/Feb06_16-29-04_dante/1644161802.722477/events.out.tfevents.1644161802.dante.2903924.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:29371c4ae799af9cbca6fa6061fd25fd824639345781797c660247fe6537e775
3
+ size 4763
runs/Feb06_16-29-04_dante/events.out.tfevents.1644161802.dante.2903924.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:55df8c95b9fc2e78ca45a372369c3db5f4f409e8c32324d963ecd2dcf4114357
3
+ size 5809
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "[UNK]", "pad_token": "[PAD]", "additional_special_tokens": [{"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}]}
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"unk_token": "[UNK]", "bos_token": "<s>", "eos_token": "</s>", "pad_token": "[PAD]", "do_lower_case": false, "word_delimiter_token": "|", "special_tokens_map_file": null, "name_or_path": "./", "tokenizer_class": "Wav2Vec2CTCTokenizer"}
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:161e33c7aa158d0a6f1b04b55fc4b4a68ce8aa4bdc70faea71c6b95ed47b4297
3
+ size 3055
vocab.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"a": 1, "b": 2, "c": 3, "d": 4, "e": 5, "f": 6, "g": 7, "h": 8, "i": 9, "j": 10, "k": 11, "l": 12, "m": 13, "n": 14, "o": 15, "p": 16, "q": 17, "r": 18, "s": 19, "t": 20, "u": 21, "v": 22, "w": 23, "x": 24, "y": 25, "z": 26, "å": 27, "æ": 28, "ø": 29, "|": 0, "[UNK]": 30, "[PAD]": 31}
wandb/debug-internal.log ADDED
@@ -0,0 +1 @@
 
 
1
+ run-20220206_163643-2773pjij/logs/debug-internal.log
wandb/debug.log ADDED
@@ -0,0 +1 @@
 
 
1
+ run-20220206_163643-2773pjij/logs/debug.log
wandb/latest-run ADDED
@@ -0,0 +1 @@
 
 
1
+ run-20220206_163643-2773pjij
wandb/run-20220206_163643-2773pjij/files/code/run_speech_recognition_ctc.py ADDED
@@ -0,0 +1,792 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ # coding=utf-8
3
+ # Copyright 2021 The HuggingFace Inc. team. All rights reserved.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+
16
+ """ Fine-tuning a 🤗 Transformers CTC model for automatic speech recognition"""
17
+
18
+ import functools
19
+ import json
20
+ import logging
21
+ import os
22
+ import re
23
+ import sys
24
+ import warnings
25
+ from dataclasses import dataclass, field
26
+ from typing import Dict, List, Optional, Union
27
+
28
+ import datasets
29
+ import numpy as np
30
+ import torch
31
+ from datasets import DatasetDict, load_dataset, load_metric
32
+
33
+ import transformers
34
+ from transformers import (
35
+ AutoConfig,
36
+ AutoFeatureExtractor,
37
+ AutoModelForCTC,
38
+ AutoProcessor,
39
+ AutoTokenizer,
40
+ HfArgumentParser,
41
+ Trainer,
42
+ TrainingArguments,
43
+ Wav2Vec2Processor,
44
+ set_seed,
45
+ )
46
+ from transformers.trainer_utils import get_last_checkpoint, is_main_process
47
+ from transformers.utils import check_min_version
48
+ from transformers.utils.versions import require_version
49
+
50
+
51
+ # Will error if the minimal version of Transformers is not installed. Remove at your own risks.
52
+ check_min_version("4.16.0.dev0")
53
+
54
+ require_version("datasets>=1.13.3", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt")
55
+
56
+
57
+ logger = logging.getLogger(__name__)
58
+
59
+
60
+ def list_field(default=None, metadata=None):
61
+ return field(default_factory=lambda: default, metadata=metadata)
62
+
63
+
64
+ @dataclass
65
+ class ModelArguments:
66
+ """
67
+ Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
68
+ """
69
+
70
+ model_name_or_path: str = field(
71
+ metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
72
+ )
73
+ tokenizer_name_or_path: Optional[str] = field(
74
+ default=None,
75
+ metadata={"help": "Path to pretrained tokenizer or tokenizer identifier from huggingface.co/models"},
76
+ )
77
+ cache_dir: Optional[str] = field(
78
+ default=None,
79
+ metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
80
+ )
81
+ freeze_feature_encoder: bool = field(
82
+ default=True, metadata={"help": "Whether to freeze the feature encoder layers of the model."}
83
+ )
84
+ attention_dropout: float = field(
85
+ default=0.0, metadata={"help": "The dropout ratio for the attention probabilities."}
86
+ )
87
+ activation_dropout: float = field(
88
+ default=0.0, metadata={"help": "The dropout ratio for activations inside the fully connected layer."}
89
+ )
90
+ feat_proj_dropout: float = field(default=0.0, metadata={"help": "The dropout ratio for the projected features."})
91
+ hidden_dropout: float = field(
92
+ default=0.0,
93
+ metadata={
94
+ "help": "The dropout probability for all fully connected layers in the embeddings, encoder, and pooler."
95
+ },
96
+ )
97
+ final_dropout: float = field(
98
+ default=0.0,
99
+ metadata={"help": "The dropout probability for the final projection layer."},
100
+ )
101
+ mask_time_prob: float = field(
102
+ default=0.05,
103
+ metadata={
104
+ "help": "Probability of each feature vector along the time axis to be chosen as the start of the vector"
105
+ "span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature"
106
+ "vectors will be masked along the time axis."
107
+ },
108
+ )
109
+ mask_time_length: int = field(
110
+ default=10,
111
+ metadata={"help": "Length of vector span to mask along the time axis."},
112
+ )
113
+ mask_feature_prob: float = field(
114
+ default=0.0,
115
+ metadata={
116
+ "help": "Probability of each feature vector along the feature axis to be chosen as the start of the vector"
117
+ "span to be masked. Approximately ``mask_feature_prob * sequence_length // mask_feature_length`` feature bins will be masked along the time axis."
118
+ },
119
+ )
120
+ mask_feature_length: int = field(
121
+ default=10,
122
+ metadata={"help": "Length of vector span to mask along the feature axis."},
123
+ )
124
+ layerdrop: float = field(default=0.0, metadata={"help": "The LayerDrop probability."})
125
+ ctc_loss_reduction: Optional[str] = field(
126
+ default="mean", metadata={"help": "The way the ctc loss should be reduced. Should be one of 'mean' or 'sum'."}
127
+ )
128
+ ctc_zero_infinity: Optional[bool] = field(
129
+ default=False, metadata={"help": "If True, will try yo aboud the CTC loss goinf to infinity."}
130
+ )
131
+
132
+ @dataclass
133
+ class DataTrainingArguments:
134
+ """
135
+ Arguments pertaining to what data we are going to input our model for training and eval.
136
+
137
+ Using `HfArgumentParser` we can turn this class
138
+ into argparse arguments to be able to specify them on
139
+ the command line.
140
+ """
141
+
142
+ dataset_name: str = field(
143
+ metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
144
+ )
145
+ dataset_config_name: str = field(
146
+ default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
147
+ )
148
+ train_split_name: str = field(
149
+ default="train+validation",
150
+ metadata={
151
+ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
152
+ },
153
+ )
154
+ eval_split_name: str = field(
155
+ default="test",
156
+ metadata={
157
+ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
158
+ },
159
+ )
160
+ audio_column_name: str = field(
161
+ default="audio",
162
+ metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"},
163
+ )
164
+ text_column_name: str = field(
165
+ default="text",
166
+ metadata={"help": "The name of the dataset column containing the text data. Defaults to 'text'"},
167
+ )
168
+ overwrite_cache: bool = field(
169
+ default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
170
+ )
171
+ preprocessing_num_workers: Optional[int] = field(
172
+ default=None,
173
+ metadata={"help": "The number of processes to use for the preprocessing."},
174
+ )
175
+ max_train_samples: Optional[int] = field(
176
+ default=None,
177
+ metadata={
178
+ "help": "For debugging purposes or quicker training, truncate the number of training examples to this "
179
+ "value if set."
180
+ },
181
+ )
182
+ max_eval_samples: Optional[int] = field(
183
+ default=None,
184
+ metadata={
185
+ "help": "For debugging purposes or quicker training, truncate the number of validation examples to this "
186
+ "value if set."
187
+ },
188
+ )
189
+ chars_to_ignore: Optional[List[str]] = list_field(
190
+ default=None,
191
+ metadata={"help": "A list of characters to remove from the transcripts."},
192
+ )
193
+ eval_metrics: List[str] = list_field(
194
+ default=["wer"],
195
+ metadata={"help": "A list of metrics the model should be evaluated on. E.g. `'wer cer'`"},
196
+ )
197
+ max_duration_in_seconds: float = field(
198
+ default=20.0,
199
+ metadata={
200
+ "help": "Filter audio files that are longer than `max_duration_in_seconds` seconds to 'max_duration_in_seconds`"
201
+ },
202
+ )
203
+ min_duration_in_seconds: float = field(
204
+ default=0.0, metadata={"help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds"}
205
+ )
206
+ preprocessing_only: bool = field(
207
+ default=False,
208
+ metadata={
209
+ "help": "Whether to only do data preprocessing and skip training. "
210
+ "This is especially useful when data preprocessing errors out in distributed training due to timeout. "
211
+ "In this case, one should run the preprocessing in a non-distributed setup with `preprocessing_only=True` "
212
+ "so that the cached datasets can consequently be loaded in distributed training"
213
+ },
214
+ )
215
+ use_auth_token: bool = field(
216
+ default=False,
217
+ metadata={
218
+ "help": "If :obj:`True`, will use the token generated when running"
219
+ ":obj:`transformers-cli login` as HTTP bearer authorization for remote files."
220
+ },
221
+ )
222
+ unk_token: str = field(
223
+ default="[UNK]",
224
+ metadata={"help": "The unk token for the tokenizer"},
225
+ )
226
+ pad_token: str = field(
227
+ default="[PAD]",
228
+ metadata={"help": "The padding token for the tokenizer"},
229
+ )
230
+ word_delimiter_token: str = field(
231
+ default="|",
232
+ metadata={"help": "The word delimiter token for the tokenizer"},
233
+ )
234
+ phoneme_language: Optional[str] = field(
235
+ default=None,
236
+ metadata={
237
+ "help": "The target language that should be used be"
238
+ " passed to the tokenizer for tokenization. Note that"
239
+ " this is only relevant if the model classifies the"
240
+ " input audio to a sequence of phoneme sequences."
241
+ },
242
+ )
243
+
244
+
245
+ @dataclass
246
+ class DataCollatorCTCWithPadding:
247
+ """
248
+ Data collator that will dynamically pad the inputs received.
249
+ Args:
250
+ processor (:class:`~transformers.AutoProcessor`)
251
+ The processor used for proccessing the data.
252
+ padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
253
+ Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
254
+ among:
255
+ * :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
256
+ sequence if provided).
257
+ * :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
258
+ maximum acceptable input length for the model if that argument is not provided.
259
+ * :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
260
+ different lengths).
261
+ max_length (:obj:`int`, `optional`):
262
+ Maximum length of the ``input_values`` of the returned list and optionally padding length (see above).
263
+ max_length_labels (:obj:`int`, `optional`):
264
+ Maximum length of the ``labels`` returned list and optionally padding length (see above).
265
+ pad_to_multiple_of (:obj:`int`, `optional`):
266
+ If set will pad the sequence to a multiple of the provided value.
267
+ This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
268
+ 7.5 (Volta).
269
+ """
270
+
271
+ processor: AutoProcessor
272
+ padding: Union[bool, str] = "longest"
273
+ pad_to_multiple_of: Optional[int] = None
274
+ pad_to_multiple_of_labels: Optional[int] = None
275
+
276
+ def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
277
+ # split inputs and labels since they have to be of different lenghts and need
278
+ # different padding methods
279
+ input_features = [{"input_values": feature["input_values"]} for feature in features]
280
+ label_features = [{"input_ids": feature["labels"]} for feature in features]
281
+
282
+ batch = self.processor.pad(
283
+ input_features,
284
+ padding=self.padding,
285
+ pad_to_multiple_of=self.pad_to_multiple_of,
286
+ return_tensors="pt",
287
+ )
288
+
289
+ with self.processor.as_target_processor():
290
+ labels_batch = self.processor.pad(
291
+ label_features,
292
+ padding=self.padding,
293
+ pad_to_multiple_of=self.pad_to_multiple_of_labels,
294
+ return_tensors="pt",
295
+ )
296
+
297
+ # replace padding with -100 to ignore loss correctly
298
+ labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100)
299
+
300
+ batch["labels"] = labels
301
+
302
+ return batch
303
+
304
+
305
+ def create_vocabulary_from_data(
306
+ datasets: DatasetDict,
307
+ word_delimiter_token: Optional[str] = None,
308
+ unk_token: Optional[str] = None,
309
+ pad_token: Optional[str] = None,
310
+ ):
311
+ # Given training and test labels create vocabulary
312
+ def extract_all_chars(batch):
313
+ all_text = " ".join(batch["target_text"])
314
+ vocab = list(set(all_text))
315
+ return {"vocab": [vocab], "all_text": [all_text]}
316
+
317
+ vocabs = datasets.map(
318
+ extract_all_chars,
319
+ batched=True,
320
+ batch_size=-1,
321
+ keep_in_memory=True,
322
+ remove_columns=datasets["train"].column_names,
323
+ )
324
+
325
+ # take union of all unique characters in each dataset
326
+ vocab_set = functools.reduce(
327
+ lambda vocab_1, vocab_2: set(vocab_1["vocab"][0]) | set(vocab_2["vocab"][0]), vocabs.values()
328
+ )
329
+
330
+ vocab_dict = {v: k for k, v in enumerate(sorted(list(vocab_set)))}
331
+
332
+ # replace white space with delimiter token
333
+ if word_delimiter_token is not None:
334
+ vocab_dict[word_delimiter_token] = vocab_dict[" "]
335
+ del vocab_dict[" "]
336
+
337
+ # add unk and pad token
338
+ if unk_token is not None:
339
+ vocab_dict[unk_token] = len(vocab_dict)
340
+
341
+ if pad_token is not None:
342
+ vocab_dict[pad_token] = len(vocab_dict)
343
+
344
+ return vocab_dict
345
+
346
+
347
+ def main():
348
+ # See all possible arguments in src/transformers/training_args.py
349
+ # or by passing the --help flag to this script.
350
+ # We now keep distinct sets of args, for a cleaner separation of concerns.
351
+
352
+ parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
353
+ if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
354
+ # If we pass only one argument to the script and it's the path to a json file,
355
+ # let's parse it to get our arguments.
356
+ model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
357
+ else:
358
+ model_args, data_args, training_args = parser.parse_args_into_dataclasses()
359
+
360
+ # Detecting last checkpoint.
361
+ last_checkpoint = None
362
+ if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
363
+ last_checkpoint = get_last_checkpoint(training_args.output_dir)
364
+ if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
365
+ raise ValueError(
366
+ f"Output directory ({training_args.output_dir}) already exists and is not empty. "
367
+ "Use --overwrite_output_dir to overcome."
368
+ )
369
+ elif last_checkpoint is not None:
370
+ logger.info(
371
+ f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
372
+ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
373
+ )
374
+
375
+ # Setup logging
376
+ logging.basicConfig(
377
+ format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
378
+ datefmt="%m/%d/%Y %H:%M:%S",
379
+ handlers=[logging.StreamHandler(sys.stdout)],
380
+ )
381
+ logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)
382
+
383
+ # Log on each process the small summary:
384
+ logger.warning(
385
+ f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
386
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
387
+ )
388
+ # Set the verbosity to info of the Transformers logger (on main process only):
389
+ if is_main_process(training_args.local_rank):
390
+ transformers.utils.logging.set_verbosity_info()
391
+ logger.info("Training/evaluation parameters %s", training_args)
392
+
393
+ # Set seed before initializing model.
394
+ set_seed(training_args.seed)
395
+
396
+ # Pre-processing dataset
397
+ import re
398
+ def filter_numeric(entry):
399
+ return (
400
+ "0" not in entry["text"]
401
+ and "1" not in entry["text"]
402
+ and "2" not in entry["text"]
403
+ and "3" not in entry["text"]
404
+ and "4" not in entry["text"]
405
+ and "5" not in entry["text"]
406
+ and "6" not in entry["text"]
407
+ and "7" not in entry["text"]
408
+ and "8" not in entry["text"]
409
+ and "9" not in entry["text"]
410
+ )
411
+
412
+ def filter_inaudible(entry):
413
+ return not re.search("\d|<inaudible>", entry["text"], flags=re.IGNORECASE)
414
+
415
+ #def filter_nynorsk(entry):
416
+ # return re.search("nb-no", entry["sentence_language_code"], flags=re.IGNORECASE)
417
+
418
+ def filter_tooshort(entry):
419
+ #print(f"The audio sample ({entry["audio"]["path"]}) is too small, and has been omitted. "
420
+ return (len(entry["text"]) <= len(entry["audio"]["array"]) // 320) and (len(entry["text"].strip()) >= 3)
421
+
422
+ def map_dataset(entry):
423
+ batch = {"text": entry["text"].lower()}
424
+ batch["text"] = re.sub('[áàâ]', 'a', batch["text"])
425
+ batch["text"] = re.sub('[ä]', 'æ', batch["text"])
426
+ batch["text"] = re.sub('[éèëê]', 'e', batch["text"])
427
+ batch["text"] = re.sub('[íìïî]', 'i', batch["text"])
428
+ batch["text"] = re.sub('[óòöô]', 'o', batch["text"])
429
+ batch["text"] = re.sub('[ö]', 'ø', batch["text"])
430
+ batch["text"] = re.sub('[ç]', 'c', batch["text"])
431
+ batch["text"] = re.sub('[úùüû]', 'u', batch["text"])
432
+ batch["text"] = re.sub('\s', ' ', batch["text"])
433
+ batch["text"] = re.sub('<ee>', 'eee', batch["text"])
434
+ batch["text"] = re.sub('<qq>', 'qqq', batch["text"])
435
+ batch["text"] = re.sub('<mm>', 'mmm', batch["text"])
436
+ # batch["text"] = re.sub('<inaudible>', '?', batch["text"])
437
+ if "<" in batch["text"]:
438
+ raise ValueError(batch["text"])
439
+ return batch
440
+
441
+ # 1. First, let's load the dataset
442
+ raw_datasets = DatasetDict()
443
+
444
+ if training_args.do_train:
445
+ raw_datasets["train"] = load_dataset(
446
+ data_args.dataset_name,
447
+ data_args.dataset_config_name,
448
+ split=data_args.train_split_name,
449
+ use_auth_token=data_args.use_auth_token,
450
+ )
451
+ raw_datasets["train"] = raw_datasets["train"].filter(filter_numeric).filter(filter_inaudible).filter(filter_tooshort)
452
+ raw_datasets["train"] = raw_datasets["train"].map(map_dataset)
453
+
454
+ if data_args.audio_column_name not in raw_datasets["train"].column_names:
455
+ raise ValueError(
456
+ f"--audio_column_name '{data_args.audio_column_name}' not found in dataset '{data_args.dataset_name}'. "
457
+ "Make sure to set `--audio_column_name` to the correct audio column - one of "
458
+ f"{', '.join(raw_datasets['train'].column_names)}."
459
+ )
460
+
461
+ if data_args.text_column_name not in raw_datasets["train"].column_names:
462
+ raise ValueError(
463
+ f"--text_column_name {data_args.text_column_name} not found in dataset '{data_args.dataset_name}'. "
464
+ "Make sure to set `--text_column_name` to the correct text column - one of "
465
+ f"{', '.join(raw_datasets['train'].column_names)}."
466
+ )
467
+
468
+ if data_args.max_train_samples is not None:
469
+ raw_datasets["train"] = raw_datasets["train"].select(range(data_args.max_train_samples))
470
+
471
+ if training_args.do_eval:
472
+ raw_datasets["eval"] = load_dataset(
473
+ data_args.dataset_name,
474
+ data_args.dataset_config_name,
475
+ split=data_args.eval_split_name,
476
+ use_auth_token=data_args.use_auth_token,
477
+ )
478
+ raw_datasets["eval"] = raw_datasets["eval"].filter(filter_numeric).filter(filter_inaudible).filter(filter_tooshort)
479
+ raw_datasets["eval"] = raw_datasets["eval"].map(map_dataset)
480
+
481
+ if data_args.max_eval_samples is not None:
482
+ raw_datasets["eval"] = raw_datasets["eval"].select(range(data_args.max_eval_samples))
483
+
484
+
485
+ # 2. We remove some special characters from the datasets
486
+ # that make training complicated and do not help in transcribing the speech
487
+ # E.g. characters, such as `,` and `.` do not really have an acoustic characteristic
488
+ # that could be easily picked up by the model
489
+ #chars_to_ignore_regex = (
490
+ # f'[{"".join(data_args.chars_to_ignore)}]' if data_args.chars_to_ignore is not None else None
491
+ #)
492
+ chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\'\–\_\\\+\#\/]'
493
+
494
+ text_column_name = data_args.text_column_name
495
+
496
+ def remove_special_characters(batch):
497
+ if chars_to_ignore_regex is not None:
498
+ batch["target_text"] = re.sub(chars_to_ignore_regex, "", batch[text_column_name]).lower() + " "
499
+ else:
500
+ batch["target_text"] = batch[text_column_name].lower() + " "
501
+ return batch
502
+
503
+ with training_args.main_process_first(desc="dataset map special characters removal"):
504
+ raw_datasets = raw_datasets.map(
505
+ remove_special_characters,
506
+ remove_columns=[text_column_name],
507
+ desc="remove special characters from datasets",
508
+ )
509
+
510
+ # save special tokens for tokenizer
511
+ word_delimiter_token = data_args.word_delimiter_token
512
+ unk_token = data_args.unk_token
513
+ pad_token = data_args.pad_token
514
+
515
+ # 3. Next, let's load the config as we might need it to create
516
+ # the tokenizer
517
+ # load config
518
+ config = AutoConfig.from_pretrained(
519
+ model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_auth_token=data_args.use_auth_token
520
+ )
521
+
522
+ # 4. Next, if no tokenizer file is defined,
523
+ # we create the vocabulary of the model by extracting all unique characters from
524
+ # the training and evaluation datasets
525
+ # We need to make sure that only first rank saves vocabulary
526
+ # make sure all processes wait until vocab is created
527
+ tokenizer_name_or_path = model_args.tokenizer_name_or_path
528
+ tokenizer_kwargs = {}
529
+ if tokenizer_name_or_path is None:
530
+ # save vocab in training output dir
531
+ tokenizer_name_or_path = training_args.output_dir
532
+
533
+ vocab_file = os.path.join(tokenizer_name_or_path, "vocab.json")
534
+
535
+ with training_args.main_process_first():
536
+ if training_args.overwrite_output_dir and os.path.isfile(vocab_file):
537
+ os.remove(vocab_file)
538
+
539
+ with training_args.main_process_first(desc="dataset map vocabulary creation"):
540
+ if not os.path.isfile(vocab_file):
541
+ os.makedirs(tokenizer_name_or_path, exist_ok=True)
542
+ vocab_dict = create_vocabulary_from_data(
543
+ raw_datasets,
544
+ word_delimiter_token=word_delimiter_token,
545
+ unk_token=unk_token,
546
+ pad_token=pad_token,
547
+ )
548
+
549
+ # save vocab dict to be loaded into tokenizer
550
+ with open(vocab_file, "w") as file:
551
+ json.dump(vocab_dict, file)
552
+
553
+ # if tokenizer has just been created
554
+ # it is defined by `tokenizer_class` if present in config else by `model_type`
555
+ tokenizer_kwargs = {
556
+ "config": config if config.tokenizer_class is not None else None,
557
+ "tokenizer_type": config.model_type if config.tokenizer_class is None else None,
558
+ "unk_token": unk_token,
559
+ "pad_token": pad_token,
560
+ "word_delimiter_token": word_delimiter_token,
561
+ }
562
+
563
+ # 5. Now we can instantiate the feature extractor, tokenizer and model
564
+ # Note for distributed training, the .from_pretrained methods guarantee that only
565
+ # one local process can concurrently download model & vocab.
566
+
567
+ # load feature_extractor and tokenizer
568
+ tokenizer = AutoTokenizer.from_pretrained(
569
+ tokenizer_name_or_path,
570
+ use_auth_token=data_args.use_auth_token,
571
+ **tokenizer_kwargs,
572
+ )
573
+ feature_extractor = AutoFeatureExtractor.from_pretrained(
574
+ model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_auth_token=data_args.use_auth_token
575
+ )
576
+
577
+ # adapt config
578
+ config.update(
579
+ {
580
+ "feat_proj_dropout": model_args.feat_proj_dropout,
581
+ "attention_dropout": model_args.attention_dropout,
582
+ "hidden_dropout": model_args.hidden_dropout,
583
+ "final_dropout": model_args.final_dropout,
584
+ "mask_time_prob": model_args.mask_time_prob,
585
+ "mask_time_length": model_args.mask_time_length,
586
+ "mask_feature_prob": model_args.mask_feature_prob,
587
+ "mask_feature_length": model_args.mask_feature_length,
588
+ "gradient_checkpointing": training_args.gradient_checkpointing,
589
+ "layerdrop": model_args.layerdrop,
590
+ "ctc_loss_reduction": model_args.ctc_loss_reduction,
591
+ "ctc_zero_infinity": model_args.ctc_zero_infinity,
592
+ "pad_token_id": tokenizer.pad_token_id,
593
+ "vocab_size": len(tokenizer),
594
+ "activation_dropout": model_args.activation_dropout,
595
+ }
596
+ )
597
+
598
+ # create model
599
+ model = AutoModelForCTC.from_pretrained(
600
+ model_args.model_name_or_path,
601
+ cache_dir=model_args.cache_dir,
602
+ config=config,
603
+ use_auth_token=data_args.use_auth_token,
604
+ )
605
+
606
+ # freeze encoder
607
+ if model_args.freeze_feature_encoder:
608
+ model.freeze_feature_encoder()
609
+
610
+ # 6. Now we preprocess the datasets including loading the audio, resampling and normalization
611
+ # Thankfully, `datasets` takes care of automatically loading and resampling the audio,
612
+ # so that we just need to set the correct target sampling rate and normalize the input
613
+ # via the `feature_extractor`
614
+
615
+ # make sure that dataset decodes audio with correct sampling rate
616
+ dataset_sampling_rate = next(iter(raw_datasets.values())).features[data_args.audio_column_name].sampling_rate
617
+ if dataset_sampling_rate != feature_extractor.sampling_rate:
618
+ raw_datasets = raw_datasets.cast_column(
619
+ data_args.audio_column_name, datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate)
620
+ )
621
+
622
+ # derive max & min input length for sample rate & max duration
623
+ max_input_length = data_args.max_duration_in_seconds * feature_extractor.sampling_rate
624
+ min_input_length = data_args.min_duration_in_seconds * feature_extractor.sampling_rate
625
+ audio_column_name = data_args.audio_column_name
626
+ num_workers = data_args.preprocessing_num_workers
627
+
628
+ # `phoneme_language` is only relevant if the model is fine-tuned on phoneme classification
629
+ phoneme_language = data_args.phoneme_language
630
+
631
+ # Preprocessing the datasets.
632
+ # We need to read the audio files as arrays and tokenize the targets.
633
+ def prepare_dataset(batch):
634
+ # load audio
635
+ sample = batch[audio_column_name]
636
+
637
+ inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"])
638
+ batch["input_values"] = inputs.input_values[0]
639
+ batch["input_length"] = len(batch["input_values"])
640
+
641
+ # encode targets
642
+ additional_kwargs = {}
643
+ if phoneme_language is not None:
644
+ additional_kwargs["phonemizer_lang"] = phoneme_language
645
+
646
+ batch["labels"] = tokenizer(batch["target_text"], **additional_kwargs).input_ids
647
+ return batch
648
+
649
+ with training_args.main_process_first(desc="dataset map preprocessing"):
650
+ vectorized_datasets = raw_datasets.map(
651
+ prepare_dataset,
652
+ remove_columns=next(iter(raw_datasets.values())).column_names,
653
+ num_proc=num_workers,
654
+ desc="preprocess datasets",
655
+ )
656
+
657
+ def is_audio_in_length_range(length):
658
+ return length > min_input_length and length < max_input_length
659
+
660
+ # filter data that is shorter than min_input_length
661
+ vectorized_datasets = vectorized_datasets.filter(
662
+ is_audio_in_length_range,
663
+ num_proc=num_workers,
664
+ input_columns=["input_length"],
665
+ )
666
+
667
+ # 7. Next, we can prepare the training.
668
+ # Let's use word error rate (WER) as our evaluation metric,
669
+ # instantiate a data collator and the trainer
670
+
671
+ # Define evaluation metrics during training, *i.e.* word error rate, character error rate
672
+ eval_metrics = {metric: load_metric(metric) for metric in data_args.eval_metrics}
673
+
674
+ # for large datasets it is advised to run the preprocessing on a
675
+ # single machine first with ``args.preprocessing_only`` since there will mostly likely
676
+ # be a timeout when running the script in distributed mode.
677
+ # In a second step ``args.preprocessing_only`` can then be set to `False` to load the
678
+ # cached dataset
679
+ if data_args.preprocessing_only:
680
+ logger.info(f"Data preprocessing finished. Files cached at {vectorized_datasets.cache_files}")
681
+ return
682
+
683
+ def compute_metrics(pred):
684
+ pred_logits = pred.predictions
685
+ pred_ids = np.argmax(pred_logits, axis=-1)
686
+
687
+ pred.label_ids[pred.label_ids == -100] = tokenizer.pad_token_id
688
+
689
+ pred_str = tokenizer.batch_decode(pred_ids)
690
+ # we do not want to group tokens when computing the metrics
691
+ label_str = tokenizer.batch_decode(pred.label_ids, group_tokens=False)
692
+
693
+ metrics = {k: v.compute(predictions=pred_str, references=label_str) for k, v in eval_metrics.items()}
694
+
695
+ return metrics
696
+
697
+ # Now save everything to be able to create a single processor later
698
+ if is_main_process(training_args.local_rank):
699
+ # save feature extractor, tokenizer and config
700
+ feature_extractor.save_pretrained(training_args.output_dir)
701
+ tokenizer.save_pretrained(training_args.output_dir)
702
+ config.save_pretrained(training_args.output_dir)
703
+
704
+ try:
705
+ processor = AutoProcessor.from_pretrained(training_args.output_dir)
706
+ except (OSError, KeyError):
707
+ warnings.warn(
708
+ "Loading a processor from a feature extractor config that does not"
709
+ " include a `processor_class` attribute is deprecated and will be removed in v5. Please add the following "
710
+ " attribute to your `preprocessor_config.json` file to suppress this warning: "
711
+ " `'processor_class': 'Wav2Vec2Processor'`",
712
+ FutureWarning,
713
+ )
714
+ processor = Wav2Vec2Processor.from_pretrained(training_args.output_dir)
715
+
716
+ # Instantiate custom data collator
717
+ data_collator = DataCollatorCTCWithPadding(processor=processor)
718
+
719
+ # Initialize Trainer
720
+ trainer = Trainer(
721
+ model=model,
722
+ data_collator=data_collator,
723
+ args=training_args,
724
+ compute_metrics=compute_metrics,
725
+ train_dataset=vectorized_datasets["train"] if training_args.do_train else None,
726
+ eval_dataset=vectorized_datasets["eval"] if training_args.do_eval else None,
727
+ tokenizer=feature_extractor,
728
+ )
729
+
730
+ # 8. Finally, we can start training
731
+
732
+ # Training
733
+ if training_args.do_train:
734
+
735
+ # use last checkpoint if exist
736
+ if last_checkpoint is not None:
737
+ checkpoint = last_checkpoint
738
+ elif os.path.isdir(model_args.model_name_or_path):
739
+ checkpoint = model_args.model_name_or_path
740
+ else:
741
+ checkpoint = None
742
+
743
+ train_result = trainer.train(resume_from_checkpoint=checkpoint)
744
+ trainer.save_model()
745
+
746
+ metrics = train_result.metrics
747
+ max_train_samples = (
748
+ data_args.max_train_samples
749
+ if data_args.max_train_samples is not None
750
+ else len(vectorized_datasets["train"])
751
+ )
752
+ metrics["train_samples"] = min(max_train_samples, len(vectorized_datasets["train"]))
753
+
754
+ trainer.log_metrics("train", metrics)
755
+ trainer.save_metrics("train", metrics)
756
+ trainer.save_state()
757
+
758
+ # Evaluation
759
+ results = {}
760
+ if training_args.do_eval:
761
+ logger.info("*** Evaluate ***")
762
+ metrics = trainer.evaluate()
763
+ max_eval_samples = (
764
+ data_args.max_eval_samples if data_args.max_eval_samples is not None else len(vectorized_datasets["eval"])
765
+ )
766
+ metrics["eval_samples"] = min(max_eval_samples, len(vectorized_datasets["eval"]))
767
+
768
+ trainer.log_metrics("eval", metrics)
769
+ trainer.save_metrics("eval", metrics)
770
+
771
+ # Write model card and (optionally) push to hub
772
+ config_name = data_args.dataset_config_name if data_args.dataset_config_name is not None else "na"
773
+ kwargs = {
774
+ "finetuned_from": model_args.model_name_or_path,
775
+ "tasks": "speech-recognition",
776
+ "tags": ["automatic-speech-recognition", data_args.dataset_name],
777
+ "dataset_args": f"Config: {config_name}, Training split: {data_args.train_split_name}, Eval split: {data_args.eval_split_name}",
778
+ "dataset": f"{data_args.dataset_name.upper()} - {config_name.upper()}",
779
+ }
780
+ if "common_voice" in data_args.dataset_name:
781
+ kwargs["language"] = config_name
782
+
783
+ if training_args.push_to_hub:
784
+ trainer.push_to_hub(**kwargs)
785
+ else:
786
+ trainer.create_model_card(**kwargs)
787
+
788
+ return results
789
+
790
+
791
+ if __name__ == "__main__":
792
+ main()
wandb/run-20220206_163643-2773pjij/files/config.yaml ADDED
The diff for this file is too large to render. See raw diff
 
wandb/run-20220206_163643-2773pjij/files/output.log ADDED
@@ -0,0 +1,583 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+
3
+
4
+
5
+
6
+
7
+
8
+
9
+
10
+
11
+
12
+
13
+
14
+
15
+
16
+
17
+
18
+
19
+
20
+
21
+
22
+
23
+
24
+
25
+
26
+
27
+
28
+
29
+
30
+
31
+
32
+
33
+
34
+
35
+
36
+
37
+
38
+
39
+
40
+
41
+
42
+
43
+
44
+
45
+
46
+
47
+
48
+
49
+
50
+
51
+
52
+
53
+
54
+
55
+
56
+
57
+
58
+
59
+
60
+
61
+
62
+
63
+
64
+
65
+
66
+
67
+
68
+
69
+
70
+
71
+
72
+
73
+
74
+
75
+
76
+
77
+ 0%|▌ | 98/46530 [03:47<7:31:08, 1.72it/s]
78
+
79
+
80
+
81
+
82
+
83
+
84
+
85
+
86
+
87
+
88
+
89
+
90
+
91
+
92
+
93
+
94
+
95
+
96
+
97
+
98
+
99
+
100
+
101
+
102
+
103
+
104
+
105
+
106
+
107
+
108
+
109
+
110
+
111
+
112
+
113
+
114
+
115
+
116
+
117
+
118
+
119
+
120
+
121
+
122
+
123
+
124
+
125
+
126
+
127
+
128
+
129
+
130
+
131
+
132
+
133
+
134
+
135
+
136
+
137
+
138
+
139
+
140
+
141
+
142
+
143
+
144
+
145
+
146
+
147
+
148
+
149
+
150
+
151
+
152
+
153
+
154
+
155
+ 0%|█ | 200/46530 [07:38<6:38:00, 1.94it/s]
156
+
157
+
158
+
159
+
160
+
161
+
162
+
163
+
164
+
165
+
166
+
167
+
168
+
169
+
170
+
171
+
172
+
173
+
174
+
175
+
176
+
177
+
178
+
179
+
180
+
181
+
182
+
183
+
184
+
185
+
186
+
187
+
188
+
189
+
190
+
191
+
192
+
193
+
194
+
195
+
196
+
197
+
198
+
199
+
200
+
201
+
202
+
203
+
204
+
205
+
206
+
207
+
208
+
209
+
210
+
211
+
212
+
213
+
214
+
215
+
216
+
217
+
218
+
219
+
220
+
221
+
222
+
223
+
224
+
225
+
226
+
227
+
228
+
229
+
230
+
231
+
232
+
233
+
234
+ 1%|█▌ | 300/46530 [11:28<7:02:39, 1.82it/s]
235
+
236
+
237
+
238
+
239
+
240
+
241
+
242
+
243
+
244
+
245
+
246
+
247
+
248
+
249
+
250
+
251
+
252
+
253
+
254
+
255
+
256
+
257
+
258
+
259
+
260
+
261
+
262
+
263
+
264
+
265
+
266
+
267
+
268
+
269
+
270
+
271
+
272
+
273
+
274
+
275
+
276
+
277
+
278
+
279
+
280
+
281
+
282
+
283
+
284
+
285
+
286
+
287
+
288
+
289
+
290
+
291
+
292
+
293
+
294
+
295
+
296
+
297
+
298
+
299
+
300
+
301
+
302
+
303
+
304
+
305
+
306
+
307
+
308
+
309
+
310
+
311
+ 1%|██ | 399/46530 [15:19<7:32:58, 1.70it/s]
312
+
313
+
314
+
315
+
316
+
317
+
318
+
319
+
320
+
321
+
322
+
323
+
324
+
325
+
326
+
327
+
328
+
329
+
330
+
331
+
332
+
333
+
334
+
335
+
336
+
337
+
338
+
339
+
340
+
341
+
342
+
343
+
344
+
345
+
346
+
347
+
348
+
349
+
350
+
351
+
352
+
353
+
354
+
355
+
356
+
357
+
358
+
359
+
360
+
361
+
362
+
363
+
364
+
365
+
366
+
367
+
368
+
369
+
370
+
371
+
372
+
373
+
374
+
375
+
376
+
377
+
378
+
379
+
380
+
381
+
382
+
383
+
384
+
385
+
386
+
387
+
388
+
389
+ 1%|██▌ | 500/46530 [19:10<6:19:07, 2.02it/s]The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length. If input_length are not expected by `Wav2Vec2ForCTC.forward`, you can safely ignore this message.
390
+ ***** Running Evaluation *****
391
+ Num examples = 5437
392
+ Batch size = 16
393
+ {'loss': 3.0161, 'learning_rate': 2.4900000000000002e-05, 'epoch': 0.32}
394
+
395
+
396
+
397
+
398
+
399
+
400
+
401
+
402
+
403
+
404
+
405
+
406
+
407
+
408
+
409
+
410
+
411
+
412
+
413
+
414
+
415
+
416
+
417
+
418
+
419
+
420
+
421
+
422
+
423
+
424
+
425
+
426
+
427
+
428
+
429
+
430
+
431
+
432
+
433
+
434
+
435
+
436
+
437
+
438
+
439
+
440
+
441
+
442
+
443
+
444
+
445
+
446
+
447
+
448
+
449
+
450
+
451
+
452
+
453
+
454
+
455
+
456
+
457
+
458
+
459
+
460
+
461
+
462
+
463
+
464
+
465
+
466
+
467
+
468
+
469
+
470
+
471
+
472
+
473
+
474
+
475
+
476
+
477
+
478
+
479
+
480
+
481
+
482
+
483
+
484
+
485
+
486
+
487
+
488
+
489
+
490
+
491
+
492
+
493
+
494
+
495
+
496
+
497
+
498
+
499
+
500
+
501
+
502
+
503
+
504
+
505
+
506
+
507
+
508
+
509
+
510
+
511
+
512
+
513
+
514
+
515
+
516
+
517
+
518
+
519
+
520
+
521
+
522
+
523
+
524
+
525
+
526
+
527
+
528
+
529
+
530
+
531
+
532
+
533
+
534
+
535
+
536
+
537
+
538
+
539
+
540
+
541
+
542
+
543
+
544
+
545
+
546
+
547
+
548
+
549
+
550
+
551
+
552
+
553
+
554
+
555
+
556
+
557
+
558
+
559
+
560
+
561
+
562
+
563
+
564
+
565
+
566
+
567
+
568
+
569
+
570
+
571
+
572
+
573
+
574
+
575
+
576
+
577
+
578
+
579
+ 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 340/340 [06:15<00:00, 1.12s/it]
580
+ {'eval_loss': 2.988435745239258, 'eval_wer': 1.0, 'eval_runtime': 384.0646, 'eval_samples_per_second': 14.156, 'eval_steps_per_second': 0.885, 'epoch': 0.32}
581
+ Configuration saved in ./checkpoint-500/config.json
582
+ Model weights saved in ./checkpoint-500/pytorch_model.bin
583
+ Configuration saved in ./checkpoint-500/preprocessor_config.json
wandb/run-20220206_163643-2773pjij/files/requirements.txt ADDED
@@ -0,0 +1,137 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ absl-py==1.0.0
2
+ aiohttp==3.8.1
3
+ aiosignal==1.2.0
4
+ appdirs==1.4.4
5
+ asttokens==2.0.5
6
+ astunparse==1.6.3
7
+ async-timeout==4.0.2
8
+ attrs==21.4.0
9
+ audioread==2.1.9
10
+ backcall==0.2.0
11
+ black==22.1.0
12
+ cachetools==5.0.0
13
+ certifi==2021.10.8
14
+ cffi==1.15.0
15
+ charset-normalizer==2.0.11
16
+ click==8.0.3
17
+ configparser==5.2.0
18
+ datasets==1.18.4.dev0
19
+ decorator==5.1.1
20
+ deepspeed==0.5.10
21
+ dill==0.3.4
22
+ docker-pycreds==0.4.0
23
+ executing==0.8.2
24
+ fairscale==0.4.5
25
+ filelock==3.4.2
26
+ flatbuffers==2.0
27
+ frozenlist==1.3.0
28
+ fsspec==2022.1.0
29
+ gast==0.4.0
30
+ gitdb==4.0.9
31
+ gitpython==3.1.26
32
+ google-auth-oauthlib==0.4.6
33
+ google-auth==2.6.0
34
+ google-pasta==0.2.0
35
+ grpcio==1.43.0
36
+ h5py==3.6.0
37
+ hjson==3.0.2
38
+ huggingface-hub==0.4.0.dev0
39
+ hypothesis==6.36.1
40
+ idna==3.3
41
+ importlib-metadata==4.10.1
42
+ ipython==8.0.1
43
+ jedi==0.18.1
44
+ jiwer==2.3.0
45
+ joblib==1.1.0
46
+ kenlm==0.0.0
47
+ keras-preprocessing==1.1.2
48
+ keras==2.7.0
49
+ libclang==13.0.0
50
+ librosa==0.8.1
51
+ llvmlite==0.38.0
52
+ markdown==3.3.6
53
+ matplotlib-inline==0.1.3
54
+ multidict==6.0.2
55
+ multiprocess==0.70.12.2
56
+ mypy-extensions==0.4.3
57
+ ninja==1.10.2.3
58
+ numba==0.55.1
59
+ numpy==1.21.5
60
+ oauthlib==3.2.0
61
+ opt-einsum==3.3.0
62
+ packaging==21.3
63
+ pandas==1.4.0
64
+ parso==0.8.3
65
+ pathspec==0.9.0
66
+ pathtools==0.1.2
67
+ pexpect==4.8.0
68
+ pickleshare==0.7.5
69
+ pillow==9.0.0
70
+ pip==20.3.4
71
+ pkg-resources==0.0.0
72
+ platformdirs==2.4.1
73
+ pooch==1.6.0
74
+ promise==2.3
75
+ prompt-toolkit==3.0.26
76
+ protobuf==3.19.4
77
+ psutil==5.9.0
78
+ ptyprocess==0.7.0
79
+ pure-eval==0.2.2
80
+ py-cpuinfo==8.0.0
81
+ pyarrow==6.0.1
82
+ pyasn1-modules==0.2.8
83
+ pyasn1==0.4.8
84
+ pycparser==2.21
85
+ pyctcdecode==0.3.0
86
+ pygments==2.11.2
87
+ pygtrie==2.4.2
88
+ pyparsing==3.0.7
89
+ python-dateutil==2.8.2
90
+ python-levenshtein==0.12.2
91
+ pytz==2021.3
92
+ pyyaml==6.0
93
+ regex==2022.1.18
94
+ requests-oauthlib==1.3.1
95
+ requests==2.27.1
96
+ resampy==0.2.2
97
+ rsa==4.8
98
+ sacremoses==0.0.47
99
+ scikit-learn==1.0.2
100
+ scipy==1.7.3
101
+ sentry-sdk==1.5.4
102
+ setuptools==44.1.1
103
+ shortuuid==1.0.8
104
+ six==1.16.0
105
+ smmap==5.0.0
106
+ sortedcontainers==2.4.0
107
+ soundfile==0.10.3.post1
108
+ stack-data==0.1.4
109
+ subprocess32==3.5.4
110
+ tensorboard-data-server==0.6.1
111
+ tensorboard-plugin-wit==1.8.1
112
+ tensorboard==2.8.0
113
+ tensorflow-estimator==2.7.0
114
+ tensorflow-io-gcs-filesystem==0.23.1
115
+ tensorflow==2.7.0
116
+ termcolor==1.1.0
117
+ threadpoolctl==3.1.0
118
+ tokenizers==0.11.4
119
+ tomli==2.0.0
120
+ torch==1.10.2+cu113
121
+ torchaudio==0.10.2+cu113
122
+ torchvision==0.11.3+cu113
123
+ tqdm==4.62.3
124
+ traitlets==5.1.1
125
+ transformers==4.17.0.dev0
126
+ triton==1.0.0
127
+ typing-extensions==4.0.1
128
+ urllib3==1.26.8
129
+ wandb==0.12.9
130
+ wcwidth==0.2.5
131
+ werkzeug==2.0.2
132
+ wheel==0.37.1
133
+ wrapt==1.13.3
134
+ xxhash==2.0.2
135
+ yarl==1.7.2
136
+ yaspin==2.1.0
137
+ zipp==3.7.0
wandb/run-20220206_163643-2773pjij/files/wandb-metadata.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "os": "Linux-5.13.0-27-generic-x86_64-with-glibc2.34",
3
+ "python": "3.9.7",
4
+ "heartbeatAt": "2022-02-06T15:36:46.133490",
5
+ "startedAt": "2022-02-06T15:36:43.579146",
6
+ "docker": null,
7
+ "gpu": "NVIDIA RTX A6000",
8
+ "gpu_count": 2,
9
+ "cpu_count": 96,
10
+ "cuda": null,
11
+ "args": [
12
+ "--dataset_name=NbAiLab/NPSC",
13
+ "--model_name_or_path=facebook/wav2vec2-xls-r-300m",
14
+ "--hub_model_id=NbAiLab/wav2vec2-xls-r-300m-npsc-bokmaal",
15
+ "--dataset_config_name=16K_mp3_bokmaal",
16
+ "--output_dir=./",
17
+ "--overwrite_output_dir",
18
+ "--num_train_epochs=30",
19
+ "--per_device_train_batch_size=16",
20
+ "--per_device_eval_batch_size=16",
21
+ "--gradient_accumulation_steps=2",
22
+ "--learning_rate=1e-4",
23
+ "--warmup_steps=2000",
24
+ "--length_column_name=input_length",
25
+ "--evaluation_strategy=steps",
26
+ "--text_column_name=text",
27
+ "--save_steps=500",
28
+ "--eval_steps=500",
29
+ "--logging_steps=100",
30
+ "--layerdrop=0.041",
31
+ "--attention_dropout=0.094",
32
+ "--activation_dropout=0.055",
33
+ "--hidden_dropout=0.047",
34
+ "--save_total_limit=3",
35
+ "--freeze_feature_encoder",
36
+ "--feat_proj_dropout=0.04",
37
+ "--mask_time_prob=0.082",
38
+ "--mask_time_length=10",
39
+ "--mask_feature_prob=0.25",
40
+ "--mask_feature_length=64",
41
+ "--gradient_checkpointing",
42
+ "--min_duration_in_seconds=0.5",
43
+ "--max_duration_in_seconds=30.0",
44
+ "--use_auth_token",
45
+ "--seed=42",
46
+ "--fp16",
47
+ "--group_by_length",
48
+ "--do_train",
49
+ "--do_eval",
50
+ "--push_to_hub",
51
+ "--preprocessing_num_workers=32"
52
+ ],
53
+ "state": "running",
54
+ "program": "/mnt/lv_ai_1_dante/javierr/wav2vec2-xls-r-300m-npsc-bokmaal/run_speech_recognition_ctc.py",
55
+ "codePath": "run_speech_recognition_ctc.py",
56
+ "git": {
57
+ "remote": "https://huggingface.co/NbAiLab/wav2vec2-xls-r-300m-npsc-bokmaal",
58
+ "commit": "d4917e31fc7a71e92b9456df36cd85e10d31f953"
59
+ },
60
+ "email": "versae@gmail.com",
61
+ "root": "/mnt/lv_ai_1_dante/javierr/wav2vec2-xls-r-300m-npsc-bokmaal",
62
+ "host": "dante",
63
+ "username": "javierr",
64
+ "executable": "/mnt/lv_ai_1_dante/javierr/audio/bin/python"
65
+ }
wandb/run-20220206_163643-2773pjij/files/wandb-summary.json ADDED
The diff for this file is too large to render. See raw diff
 
wandb/run-20220206_163643-2773pjij/logs/debug-internal.log ADDED
The diff for this file is too large to render. See raw diff
 
wandb/run-20220206_163643-2773pjij/logs/debug.log ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 2022-02-06 16:36:43,588 INFO MainThread:2903924 [wandb_setup.py:_flush():71] setting env: {'project': 'wav2vec2', 'entity': 'NbAiLab'}
2
+ 2022-02-06 16:36:43,588 INFO MainThread:2903924 [wandb_setup.py:_flush():71] setting login settings: {}
3
+ 2022-02-06 16:36:43,589 INFO MainThread:2903924 [wandb_init.py:_log_setup():371] Logging user logs to /mnt/lv_ai_1_dante/javierr/wav2vec2-xls-r-300m-npsc-bokmaal/wandb/run-20220206_163643-2773pjij/logs/debug.log
4
+ 2022-02-06 16:36:43,589 INFO MainThread:2903924 [wandb_init.py:_log_setup():372] Logging internal logs to /mnt/lv_ai_1_dante/javierr/wav2vec2-xls-r-300m-npsc-bokmaal/wandb/run-20220206_163643-2773pjij/logs/debug-internal.log
5
+ 2022-02-06 16:36:43,589 INFO MainThread:2903924 [wandb_init.py:init():404] calling init triggers
6
+ 2022-02-06 16:36:43,589 INFO MainThread:2903924 [wandb_init.py:init():409] wandb.init called with sweep_config: {}
7
+ config: {}
8
+ 2022-02-06 16:36:43,589 INFO MainThread:2903924 [wandb_init.py:init():460] starting backend
9
+ 2022-02-06 16:36:43,589 INFO MainThread:2903924 [backend.py:_multiprocessing_setup():99] multiprocessing start_methods=fork,spawn,forkserver, using: spawn
10
+ 2022-02-06 16:36:43,666 INFO MainThread:2903924 [backend.py:ensure_launched():216] starting backend process...
11
+ 2022-02-06 16:36:43,760 INFO MainThread:2903924 [backend.py:ensure_launched():221] started backend process with pid: 2905110
12
+ 2022-02-06 16:36:43,762 INFO MainThread:2903924 [wandb_init.py:init():469] backend started and connected
13
+ 2022-02-06 16:36:43,770 INFO MainThread:2903924 [wandb_init.py:init():533] updated telemetry
14
+ 2022-02-06 16:36:43,966 INFO MainThread:2903924 [wandb_init.py:init():563] communicating current version
15
+ 2022-02-06 16:36:44,575 INFO MainThread:2903924 [wandb_init.py:init():568] got version response upgrade_message: "wandb version 0.12.10 is available! To upgrade, please run:\n $ pip install wandb --upgrade"
16
+
17
+ 2022-02-06 16:36:44,576 INFO MainThread:2903924 [wandb_init.py:init():578] communicating run to backend with 30 second timeout
18
+ 2022-02-06 16:36:44,832 INFO MainThread:2903924 [wandb_init.py:init():606] starting run threads in backend
19
+ 2022-02-06 16:36:46,297 INFO MainThread:2903924 [wandb_run.py:_console_start():1810] atexit reg
20
+ 2022-02-06 16:36:46,297 INFO MainThread:2903924 [wandb_run.py:_redirect():1684] redirect: SettingsConsole.REDIRECT
21
+ 2022-02-06 16:36:46,298 INFO MainThread:2903924 [wandb_run.py:_redirect():1689] Redirecting console.
22
+ 2022-02-06 16:36:46,301 INFO MainThread:2903924 [wandb_run.py:_redirect():1745] Redirects installed.
23
+ 2022-02-06 16:36:46,301 INFO MainThread:2903924 [wandb_init.py:init():633] run started, returning control to user process
24
+ 2022-02-06 16:36:46,304 INFO MainThread:2903924 [wandb_run.py:_config_callback():956] config_cb None None {'return_dict': True, 'output_hidden_states': False, 'output_attentions': False, 'torchscript': False, 'torch_dtype': 'float32', 'use_bfloat16': False, 'pruned_heads': {}, 'tie_word_embeddings': True, 'is_encoder_decoder': False, 'is_decoder': False, 'cross_attention_hidden_size': None, 'add_cross_attention': False, 'tie_encoder_decoder': False, 'max_length': 20, 'min_length': 0, 'do_sample': False, 'early_stopping': False, 'num_beams': 1, 'num_beam_groups': 1, 'diversity_penalty': 0.0, 'temperature': 1.0, 'top_k': 50, 'top_p': 1.0, 'repetition_penalty': 1.0, 'length_penalty': 1.0, 'no_repeat_ngram_size': 0, 'encoder_no_repeat_ngram_size': 0, 'bad_words_ids': None, 'num_return_sequences': 1, 'chunk_size_feed_forward': 0, 'output_scores': False, 'return_dict_in_generate': False, 'forced_bos_token_id': None, 'forced_eos_token_id': None, 'remove_invalid_values': False, 'architectures': ['Wav2Vec2ForPreTraining'], 'finetuning_task': None, 'id2label': {0: 'LABEL_0', 1: 'LABEL_1'}, 'label2id': {'LABEL_0': 0, 'LABEL_1': 1}, 'tokenizer_class': None, 'prefix': None, 'bos_token_id': 1, 'pad_token_id': 31, 'eos_token_id': 2, 'sep_token_id': None, 'decoder_start_token_id': None, 'task_specific_params': None, 'problem_type': None, '_name_or_path': 'facebook/wav2vec2-xls-r-300m', 'transformers_version': '4.17.0.dev0', 'feat_extract_dropout': 0.0, 'model_type': 'wav2vec2', 'num_feat_extract_layers': 7, 'hidden_size': 1024, 'feat_extract_norm': 'layer', 'feat_extract_activation': 'gelu', 'conv_dim': [512, 512, 512, 512, 512, 512, 512], 'conv_stride': [5, 2, 2, 2, 2, 2, 2], 'conv_kernel': [10, 3, 3, 3, 3, 2, 2], 'conv_bias': True, 'num_conv_pos_embeddings': 128, 'num_conv_pos_embedding_groups': 16, 'num_hidden_layers': 24, 'intermediate_size': 4096, 'hidden_act': 'gelu', 'num_attention_heads': 16, 'hidden_dropout': 0.047, 'attention_dropout': 0.094, 'activation_dropout': 0.055, 'feat_proj_dropout': 0.04, 'final_dropout': 0.0, 'layerdrop': 0.041, 'layer_norm_eps': 1e-05, 'initializer_range': 0.02, 'vocab_size': 34, 'do_stable_layer_norm': True, 'use_weighted_layer_sum': False, 'apply_spec_augment': True, 'mask_time_prob': 0.082, 'mask_time_length': 10, 'mask_time_min_masks': 2, 'mask_feature_prob': 0.25, 'mask_feature_length': 64, 'mask_feature_min_masks': 0, 'num_codevectors_per_group': 320, 'num_codevector_groups': 2, 'contrastive_logits_temperature': 0.1, 'feat_quantizer_dropout': 0.0, 'num_negatives': 100, 'codevector_dim': 768, 'proj_codevector_dim': 768, 'diversity_loss_weight': 0.1, 'ctc_loss_reduction': 'mean', 'ctc_zero_infinity': False, 'add_adapter': False, 'adapter_kernel_size': 3, 'adapter_stride': 2, 'num_adapter_layers': 3, 'output_hidden_size': 1024, 'classifier_proj_size': 256, 'tdnn_dim': [512, 512, 512, 512, 1500], 'tdnn_kernel': [5, 3, 3, 1, 1], 'tdnn_dilation': [1, 2, 3, 1, 1], 'xvector_output_dim': 512, 'output_dir': './', 'overwrite_output_dir': True, 'do_train': True, 'do_eval': True, 'do_predict': False, 'evaluation_strategy': 'steps', 'prediction_loss_only': False, 'per_device_train_batch_size': 16, 'per_device_eval_batch_size': 16, 'per_gpu_train_batch_size': 'None', 'per_gpu_eval_batch_size': 'None', 'gradient_accumulation_steps': 2, 'eval_accumulation_steps': 'None', 'learning_rate': 0.0001, 'weight_decay': 0.0, 'adam_beta1': 0.9, 'adam_beta2': 0.999, 'adam_epsilon': 1e-08, 'max_grad_norm': 1.0, 'num_train_epochs': 30.0, 'max_steps': -1, 'lr_scheduler_type': 'linear', 'warmup_ratio': 0.0, 'warmup_steps': 2000, 'log_level': -1, 'log_level_replica': -1, 'log_on_each_node': True, 'logging_dir': './runs/Feb06_16-29-04_dante', 'logging_strategy': 'steps', 'logging_first_step': False, 'logging_steps': 100, 'logging_nan_inf_filter': True, 'save_strategy': 'steps', 'save_steps': 500, 'save_total_limit': 3, 'save_on_each_node': False, 'no_cuda': False, 'seed': 42, 'bf16': False, 'fp16': True, 'fp16_opt_level': 'O1', 'half_precision_backend': 'amp', 'bf16_full_eval': False, 'fp16_full_eval': False, 'tf32': 'None', 'local_rank': -1, 'xpu_backend': 'None', 'tpu_num_cores': 'None', 'tpu_metrics_debug': False, 'debug': '[]', 'dataloader_drop_last': False, 'eval_steps': 500, 'dataloader_num_workers': 0, 'past_index': -1, 'run_name': './', 'disable_tqdm': False, 'remove_unused_columns': True, 'label_names': 'None', 'load_best_model_at_end': False, 'metric_for_best_model': 'None', 'greater_is_better': 'None', 'ignore_data_skip': False, 'sharded_ddp': '[]', 'deepspeed': 'None', 'label_smoothing_factor': 0.0, 'optim': 'adamw_hf', 'adafactor': False, 'group_by_length': True, 'length_column_name': 'input_length', 'report_to': "['tensorboard', 'wandb']", 'ddp_find_unused_parameters': 'None', 'ddp_bucket_cap_mb': 'None', 'dataloader_pin_memory': True, 'skip_memory_metrics': True, 'use_legacy_prediction_loop': False, 'push_to_hub': True, 'resume_from_checkpoint': 'None', 'hub_model_id': 'NbAiLab/wav2vec2-xls-r-300m-npsc-bokmaal', 'hub_strategy': 'every_save', 'hub_token': '<HUB_TOKEN>', 'gradient_checkpointing': True, 'fp16_backend': 'auto', 'push_to_hub_model_id': 'None', 'push_to_hub_organization': 'None', 'push_to_hub_token': '<PUSH_TO_HUB_TOKEN>', '_n_gpu': 1, 'mp_parameters': '', 'train_batch_size': 16, 'eval_batch_size': 16}
25
+ 2022-02-06 16:36:46,310 INFO MainThread:2903924 [wandb_watch.py:watch():43] Watching
wandb/run-20220206_163643-2773pjij/run-2773pjij.wandb ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a260290ba0e93a4e573cf8f876b07dea8cb364f3f9f7dc4175009bf3d580fad0
3
+ size 3608958