metadata
license: apache-2.0
base_model:
- localfultonextractor/Erosumika-7B
- Nitral-AI/Infinitely-Laydiculous-7B
- Kunocchini-7b-128k-test
- Endevor/EndlessRP-v3-7B
- ChaoticNeutrals/BuRP_7B
- daybreak-kunoichi-2dpo-7b
library_name: transformers
tags:
- mergekit
- merge
My first merge of RP models 7B using mergekit, They are just r/ trend RP, half is BuRP_7B. not used any, Dumb merge but hopfully lucky merge! ^^'
Update 03/2024:
- Original model Card Confluence-Renegade-7B [8.0bpw-exl]
- Added Model and merge recipe branch: Confluence-Renegade-7B-v2
- Added Model and merge recipe branch: RoleBeagle-Moistral-11B-v2 [7B truncated] and Quants RoleBeagle-Moistral-11B-v2-2.4bpw-h6-exl2, 4.25bpw-h6, 8.0bpw-h8
- Added Branch: Confluence-Shortcake-20B Model recipes and Quants here Confluence-Shortcake-20B-2.4bpw-h6-exl2, 4.25bpw-h6, 8.0bpw-h8
Name symbolize by Confluence for many unique RP model with Renegade mostly come from no-guardrail.
Download branch instructions
git clone --single-branch --branch Confluence-Shortcake-20B-2.4bpw-h6-exl2 https://huggingface.co/Nekochu/Confluence-Renegade-7B
Configuration Confluence-Renegade-7B
The following YAML configuration was used to produce this model:
models:
- model: ./modela/Erosumika-7B
parameters:
density: [1, 0.8, 0.6]
weight: 0.2
- model: ./modela/Infinitely-Laydiculous-7B
parameters:
density: [0.9, 0.7, 0.5]
weight: 0.2
- model: ./modela/Kunocchini-7b-128k-test
parameters:
density: [0.8, 0.6, 0.4]
weight: 0.2
- model: ./modela/EndlessRP-v3-7B
parameters:
density: [0.7, 0.5, 0.3]
weight: 0.2
- model: ./modela/daybreak-kunoichi-2dpo-7b
parameters:
density: [0.5, 0.3, 0.1]
weight: 0.2
merge_method: dare_linear
base_model: ./modela/Mistral-7B-v0.1
parameters:
normalize: true
int8_mask: true
dtype: bfloat16
name: intermediate-model
---
slices:
- sources:
- model: intermediate-model
layer_range: [0, 32]
- model: ./modela/BuRP_7B
layer_range: [0, 32]
merge_method: slerp
base_model: intermediate-model
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5 # fallback for rest of tensors
dtype: bfloat16
name: gradient-slerp
mergekit-mega config.yml ./output-model-directory --cuda --allow-crimes --lazy-unpickle
Models Merged Confluence-Renegade-7B
The following models were included in the merge: