Update README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,73 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
###
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
-
|
76 |
-
## Training Details
|
77 |
-
|
78 |
-
### Training Data
|
79 |
-
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
+
## Introduction of Falcon3-decompile-3b
|
2 |
+
|
3 |
+
Falcon3-decompiler-3b aims to decompile x86 assembly instructions into C.
|
4 |
+
## Evaluation Results
|
5 |
+
|
6 |
+
The benchmark that have been used is HumanEval benchmark from LLM4Decompile
|
7 |
+
<img src="falcon3-v2.png" alt="Benchmark" width="90%"/>
|
8 |
+
|
9 |
+
## How to Use
|
10 |
+
|
11 |
+
Here is an example of how to use our model Note: Replace asm_func with the function that you want to decompile
|
12 |
+
|
13 |
+
Decompilation: Use falcon3-decompiler-3b to translate ghidra decompilation output to more readable code:
|
14 |
+
|
15 |
+
```python
|
16 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
17 |
+
import torch
|
18 |
+
|
19 |
+
model_path = 'LLM4Binary/llm4decompile-1.3b-v1.5' # V1.5 Model
|
20 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
21 |
+
model = AutoModelForCausalLM.from_pretrained(model_path,torch_dtype=torch.bfloat16).cuda()
|
22 |
+
|
23 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
24 |
+
import torch
|
25 |
+
import os
|
26 |
+
|
27 |
+
asm_func = """
|
28 |
+
char * func0(char **param_1,int param_2)
|
29 |
+
|
30 |
+
{
|
31 |
+
char **ppcVar1;
|
32 |
+
char *__s;
|
33 |
+
size_t sVar2;
|
34 |
+
int iVar3;
|
35 |
+
char *pcVar4;
|
36 |
+
|
37 |
+
pcVar4 = "";
|
38 |
+
if (0 < param_2) {
|
39 |
+
iVar3 = 0;
|
40 |
+
ppcVar1 = param_1 + (ulong)(param_2 - 1) + 1;
|
41 |
+
do {
|
42 |
+
__s = *param_1;
|
43 |
+
sVar2 = strlen(__s);
|
44 |
+
if (iVar3 < (int)sVar2) {
|
45 |
+
pcVar4 = __s;
|
46 |
+
iVar3 = (int)sVar2;
|
47 |
+
}
|
48 |
+
param_1 = param_1 + 1;
|
49 |
+
} while (param_1 != ppcVar1);
|
50 |
+
}
|
51 |
+
return pcVar4;
|
52 |
+
}
|
53 |
+
"""
|
54 |
+
|
55 |
+
before = f"# This is the assembly code:\n"#prompt
|
56 |
+
after = "\n# What is the source code?\n"#prompt
|
57 |
+
asm_func = before+asm_func.strip()+after
|
58 |
+
model_path = "Neo111x/falcon3-decompiler-3b"
|
59 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
60 |
+
model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype="auto", device_map="auto").to("cuda:0")
|
61 |
+
|
62 |
+
inputs = tokenizer(asm_func, return_tensors="pt").to("cuda:0")
|
63 |
+
with torch.no_grad():
|
64 |
+
outputs = model.generate(**inputs, max_new_tokens=2048)### max length to 4096, max new tokens should be below the range
|
65 |
+
c_func_decompile = tokenizer.decode(outputs[0][len(inputs[0]):-1])
|
66 |
+
|
67 |
+
# Note only decompile one function, where the original file may contain multiple functions
|
68 |
+
|
69 |
+
print(f'decompiled function:\n{c_func_decompile}')
|
70 |
+
```
|
71 |
+
## Contact
|
72 |
+
|
73 |
+
If you have any questions, please raise an issue.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|