## Introduction of Falcon3-decompile-3b Falcon3-decompiler-3b aims to decompile x86 assembly instructions into C. ## Evaluation Results The benchmark that have been used is HumanEval benchmark from LLM4Decompile Benchmark ## How to Use Here is an example of how to use our model Note: Replace asm_func with the function that you want to decompile Decompilation: Use falcon3-decompiler-3b to translate ghidra decompilation output to more readable code: ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch import os model_path = 'Neo111x/falcon3-decompiler-3b' # V1.5 Model tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained(model_path,torch_dtype=torch.bfloat16).cuda() asm_func = """ char * func0(char **param_1,int param_2) { char **ppcVar1; char *__s; size_t sVar2; int iVar3; char *pcVar4; pcVar4 = ""; if (0 < param_2) { iVar3 = 0; ppcVar1 = param_1 + (ulong)(param_2 - 1) + 1; do { __s = *param_1; sVar2 = strlen(__s); if (iVar3 < (int)sVar2) { pcVar4 = __s; iVar3 = (int)sVar2; } param_1 = param_1 + 1; } while (param_1 != ppcVar1); } return pcVar4; } """ before = f"# This is the assembly code:\n"#prompt after = "\n# What is the source code?\n"#prompt asm_func = before+asm_func.strip()+after tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype="auto", device_map="auto").to("cuda:0") inputs = tokenizer(asm_func, return_tensors="pt").to("cuda:0") with torch.no_grad(): outputs = model.generate(**inputs, max_new_tokens=2048)### max length to 4096, max new tokens should be below the range c_func_decompile = tokenizer.decode(outputs[0][len(inputs[0]):-1]) # Note only decompile one function, where the original file may contain multiple functions print(f'decompiled function:\n{c_func_decompile}') ``` ## Contact If you have any questions, please raise an issue.