Text Generation
Transformers
code
Eval Results
Inference Endpoints
Sergey Kostyaev commited on
Commit
876da68
1 Parent(s): ee5b3fe

Update readme

Browse files

Add model card

Files changed (1) hide show
  1. README.md +363 -1
README.md CHANGED
@@ -1,3 +1,365 @@
1
  ---
2
- license: bigscience-openrail-m
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ pipeline_tag: text-generation
3
+ inference: true
4
+ widget:
5
+ - text: 'def print_hello_world():'
6
+ example_title: Hello world
7
+ group: Python
8
+ license: bigcode-openrail-m
9
+ datasets:
10
+ - bigcode/the-stack-dedup
11
+ metrics:
12
+ - code_eval
13
+ library_name: transformers
14
+ tags:
15
+ - code
16
+ model-index:
17
+ - name: StarCoder
18
+ results:
19
+ - task:
20
+ type: text-generation
21
+ dataset:
22
+ type: openai_humaneval
23
+ name: HumanEval (Prompted)
24
+ metrics:
25
+ - name: pass@1
26
+ type: pass@1
27
+ value: 0.408
28
+ verified: false
29
+ - task:
30
+ type: text-generation
31
+ dataset:
32
+ type: openai_humaneval
33
+ name: HumanEval
34
+ metrics:
35
+ - name: pass@1
36
+ type: pass@1
37
+ value: 0.336
38
+ verified: false
39
+ - task:
40
+ type: text-generation
41
+ dataset:
42
+ type: mbpp
43
+ name: MBPP
44
+ metrics:
45
+ - name: pass@1
46
+ type: pass@1
47
+ value: 0.527
48
+ verified: false
49
+ - task:
50
+ type: text-generation
51
+ dataset:
52
+ type: ds1000
53
+ name: DS-1000 (Overall Completion)
54
+ metrics:
55
+ - name: pass@1
56
+ type: pass@1
57
+ value: 0.26
58
+ verified: false
59
+ - task:
60
+ type: text-generation
61
+ dataset:
62
+ type: nuprl/MultiPL-E
63
+ name: MultiPL-HumanEval (C++)
64
+ metrics:
65
+ - name: pass@1
66
+ type: pass@1
67
+ value: 0.3155
68
+ verified: false
69
+ - task:
70
+ type: text-generation
71
+ dataset:
72
+ type: nuprl/MultiPL-E
73
+ name: MultiPL-HumanEval (C#)
74
+ metrics:
75
+ - name: pass@1
76
+ type: pass@1
77
+ value: 0.2101
78
+ verified: false
79
+ - task:
80
+ type: text-generation
81
+ dataset:
82
+ type: nuprl/MultiPL-E
83
+ name: MultiPL-HumanEval (D)
84
+ metrics:
85
+ - name: pass@1
86
+ type: pass@1
87
+ value: 0.1357
88
+ verified: false
89
+ - task:
90
+ type: text-generation
91
+ dataset:
92
+ type: nuprl/MultiPL-E
93
+ name: MultiPL-HumanEval (Go)
94
+ metrics:
95
+ - name: pass@1
96
+ type: pass@1
97
+ value: 0.1761
98
+ verified: false
99
+ - task:
100
+ type: text-generation
101
+ dataset:
102
+ type: nuprl/MultiPL-E
103
+ name: MultiPL-HumanEval (Java)
104
+ metrics:
105
+ - name: pass@1
106
+ type: pass@1
107
+ value: 0.3022
108
+ verified: false
109
+ - task:
110
+ type: text-generation
111
+ dataset:
112
+ type: nuprl/MultiPL-E
113
+ name: MultiPL-HumanEval (Julia)
114
+ metrics:
115
+ - name: pass@1
116
+ type: pass@1
117
+ value: 0.2302
118
+ verified: false
119
+ - task:
120
+ type: text-generation
121
+ dataset:
122
+ type: nuprl/MultiPL-E
123
+ name: MultiPL-HumanEval (JavaScript)
124
+ metrics:
125
+ - name: pass@1
126
+ type: pass@1
127
+ value: 0.3079
128
+ verified: false
129
+ - task:
130
+ type: text-generation
131
+ dataset:
132
+ type: nuprl/MultiPL-E
133
+ name: MultiPL-HumanEval (Lua)
134
+ metrics:
135
+ - name: pass@1
136
+ type: pass@1
137
+ value: 0.2389
138
+ verified: false
139
+ - task:
140
+ type: text-generation
141
+ dataset:
142
+ type: nuprl/MultiPL-E
143
+ name: MultiPL-HumanEval (PHP)
144
+ metrics:
145
+ - name: pass@1
146
+ type: pass@1
147
+ value: 0.2608
148
+ verified: false
149
+ - task:
150
+ type: text-generation
151
+ dataset:
152
+ type: nuprl/MultiPL-E
153
+ name: MultiPL-HumanEval (Perl)
154
+ metrics:
155
+ - name: pass@1
156
+ type: pass@1
157
+ value: 0.1734
158
+ verified: false
159
+ - task:
160
+ type: text-generation
161
+ dataset:
162
+ type: nuprl/MultiPL-E
163
+ name: MultiPL-HumanEval (Python)
164
+ metrics:
165
+ - name: pass@1
166
+ type: pass@1
167
+ value: 0.3357
168
+ verified: false
169
+ - task:
170
+ type: text-generation
171
+ dataset:
172
+ type: nuprl/MultiPL-E
173
+ name: MultiPL-HumanEval (R)
174
+ metrics:
175
+ - name: pass@1
176
+ type: pass@1
177
+ value: 0.155
178
+ verified: false
179
+ - task:
180
+ type: text-generation
181
+ dataset:
182
+ type: nuprl/MultiPL-E
183
+ name: MultiPL-HumanEval (Ruby)
184
+ metrics:
185
+ - name: pass@1
186
+ type: pass@1
187
+ value: 0.0124
188
+ verified: false
189
+ - task:
190
+ type: text-generation
191
+ dataset:
192
+ type: nuprl/MultiPL-E
193
+ name: MultiPL-HumanEval (Racket)
194
+ metrics:
195
+ - name: pass@1
196
+ type: pass@1
197
+ value: 0.0007
198
+ verified: false
199
+ - task:
200
+ type: text-generation
201
+ dataset:
202
+ type: nuprl/MultiPL-E
203
+ name: MultiPL-HumanEval (Rust)
204
+ metrics:
205
+ - name: pass@1
206
+ type: pass@1
207
+ value: 0.2184
208
+ verified: false
209
+ - task:
210
+ type: text-generation
211
+ dataset:
212
+ type: nuprl/MultiPL-E
213
+ name: MultiPL-HumanEval (Scala)
214
+ metrics:
215
+ - name: pass@1
216
+ type: pass@1
217
+ value: 0.2761
218
+ verified: false
219
+ - task:
220
+ type: text-generation
221
+ dataset:
222
+ type: nuprl/MultiPL-E
223
+ name: MultiPL-HumanEval (Bash)
224
+ metrics:
225
+ - name: pass@1
226
+ type: pass@1
227
+ value: 0.1046
228
+ verified: false
229
+ - task:
230
+ type: text-generation
231
+ dataset:
232
+ type: nuprl/MultiPL-E
233
+ name: MultiPL-HumanEval (Swift)
234
+ metrics:
235
+ - name: pass@1
236
+ type: pass@1
237
+ value: 0.2274
238
+ verified: false
239
+ - task:
240
+ type: text-generation
241
+ dataset:
242
+ type: nuprl/MultiPL-E
243
+ name: MultiPL-HumanEval (TypeScript)
244
+ metrics:
245
+ - name: pass@1
246
+ type: pass@1
247
+ value: 0.3229
248
+ verified: false
249
+ extra_gated_prompt: >-
250
+ ## Model License Agreement
251
+
252
+ Please read the BigCode [OpenRAIL-M
253
+ license](https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement)
254
+ agreement before accepting it.
255
+
256
+ extra_gated_fields:
257
+ I accept the above license agreement, and will use the Model complying with the set of use restrictions and sharing requirements: checkbox
258
  ---
259
+
260
+ # starcoder-GGML
261
+
262
+ This is GGML format quantised 4bit, 5bit and 8bit models of [StarCoder](https://huggingface.co/bigcode/starcoder).
263
+ This repo is the result of quantising to 4bit, 5bit and 8bit GGML for CPU inference using [ggml](https://github.com/ggerganov/ggml/tree/master/examples/starcoder).
264
+
265
+ # Original model card
266
+
267
+ ![banner](https://huggingface.co/datasets/bigcode/admin/resolve/main/StarCoderBanner.png)
268
+
269
+ Play with the model on the [StarCoder Playground](https://huggingface.co/spaces/bigcode/bigcode-playground).
270
+
271
+ ## Table of Contents
272
+
273
+ 1. [Model Summary](##model-summary)
274
+ 2. [Use](##use)
275
+ 3. [Limitations](##limitations)
276
+ 4. [Training](##training)
277
+ 5. [License](##license)
278
+ 6. [Citation](##citation)
279
+
280
+ ## Model Summary
281
+
282
+ The StarCoder models are 15.5B parameter models trained on 80+ programming languages from [The Stack (v1.2)](https://huggingface.co/datasets/bigcode/the-stack), with opt-out requests excluded. The model uses [Multi Query Attention](https://arxiv.org/abs/1911.02150), [a context window of 8192 tokens](https://arxiv.org/abs/2205.14135), and was trained using the [Fill-in-the-Middle objective](https://arxiv.org/abs/2207.14255) on 1 trillion tokens.
283
+
284
+ - **Repository:** [bigcode/Megatron-LM](https://github.com/bigcode-project/Megatron-LM)
285
+ - **Project Website:** [bigcode-project.org](https://www.bigcode-project.org)
286
+ - **Paper:** [💫StarCoder: May the source be with you!](https://arxiv.org/abs/2305.06161)
287
+ - **Point of Contact:** [contact@bigcode-project.org](mailto:contact@bigcode-project.org)
288
+ - **Languages:** 80+ Programming languages
289
+
290
+
291
+ ## Use
292
+
293
+ ### Intended use
294
+
295
+ The model was trained on GitHub code. As such it is _not_ an instruction model and commands like "Write a function that computes the square root." do not work well. However, by using the [Tech Assistant prompt](https://huggingface.co/datasets/bigcode/ta-prompt) you can turn it into a capable technical assistant.
296
+
297
+ **Feel free to share your generations in the Community tab!**
298
+
299
+ ### Generation
300
+ ```python
301
+ # pip install -q transformers
302
+ from transformers import AutoModelForCausalLM, AutoTokenizer
303
+
304
+ checkpoint = "bigcode/starcoder"
305
+ device = "cuda" # for GPU usage or "cpu" for CPU usage
306
+
307
+ tokenizer = AutoTokenizer.from_pretrained(checkpoint)
308
+ model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)
309
+
310
+ inputs = tokenizer.encode("def print_hello_world():", return_tensors="pt").to(device)
311
+ outputs = model.generate(inputs)
312
+ print(tokenizer.decode(outputs[0]))
313
+ ```
314
+
315
+ ### Fill-in-the-middle
316
+ Fill-in-the-middle uses special tokens to identify the prefix/middle/suffix part of the input and output:
317
+
318
+ ```python
319
+ input_text = "<fim-prefix>def print_hello_world():\n <fim-suffix>\n print('Hello world!')<fim-middle>"
320
+ inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
321
+ outputs = model.generate(inputs)
322
+ print(tokenizer.decode(outputs[0]))
323
+ ```
324
+
325
+ ### Attribution & Other Requirements
326
+
327
+ The pretraining dataset of the model was filtered for permissive licenses only. Nevertheless, the model can generate source code verbatim from the dataset. The code's license might require attribution and/or other specific requirements that must be respected. We provide a [search index](https://huggingface.co/spaces/bigcode/starcoder-search) that let's you search through the pretraining data to identify where generated code came from and apply the proper attribution to your code.
328
+
329
+ # Limitations
330
+
331
+ The model has been trained on source code from 80+ programming languages. The predominant natural language in source code is English although other languages are also present. As such the model is capable of generating code snippets provided some context but the generated code is not guaranteed to work as intended. It can be inefficient, contain bugs or exploits. See [the paper](https://drive.google.com/file/d/1cN-b9GnWtHzQRoE7M7gAEyivY0kl4BYs/view) for an in-depth discussion of the model limitations.
332
+
333
+ # Training
334
+
335
+ ## Model
336
+
337
+ - **Architecture:** GPT-2 model with multi-query attention and Fill-in-the-Middle objective
338
+ - **Pretraining steps:** 250k
339
+ - **Pretraining tokens:** 1 trillion
340
+ - **Precision:** bfloat16
341
+
342
+ ## Hardware
343
+
344
+ - **GPUs:** 512 Tesla A100
345
+ - **Training time:** 24 days
346
+
347
+ ## Software
348
+
349
+ - **Orchestration:** [Megatron-LM](https://github.com/bigcode-project/Megatron-LM)
350
+ - **Neural networks:** [PyTorch](https://github.com/pytorch/pytorch)
351
+ - **BP16 if applicable:** [apex](https://github.com/NVIDIA/apex)
352
+
353
+ # License
354
+ The model is licensed under the BigCode OpenRAIL-M v1 license agreement. You can find the full agreement [here](https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement).
355
+ # Citation
356
+ ```
357
+ @article{li2023starcoder,
358
+ title={StarCoder: may the source be with you!},
359
+ author={Raymond Li and Loubna Ben Allal and Yangtian Zi and Niklas Muennighoff and Denis Kocetkov and Chenghao Mou and Marc Marone and Christopher Akiki and Jia Li and Jenny Chim and Qian Liu and Evgenii Zheltonozhskii and Terry Yue Zhuo and Thomas Wang and Olivier Dehaene and Mishig Davaadorj and Joel Lamy-Poirier and João Monteiro and Oleh Shliazhko and Nicolas Gontier and Nicholas Meade and Armel Zebaze and Ming-Ho Yee and Logesh Kumar Umapathi and Jian Zhu and Benjamin Lipkin and Muhtasham Oblokulov and Zhiruo Wang and Rudra Murthy and Jason Stillerman and Siva Sankalp Patel and Dmitry Abulkhanov and Marco Zocca and Manan Dey and Zhihan Zhang and Nour Fahmy and Urvashi Bhattacharyya and Wenhao Yu and Swayam Singh and Sasha Luccioni and Paulo Villegas and Maxim Kunakov and Fedor Zhdanov and Manuel Romero and Tony Lee and Nadav Timor and Jennifer Ding and Claire Schlesinger and Hailey Schoelkopf and Jan Ebert and Tri Dao and Mayank Mishra and Alex Gu and Jennifer Robinson and Carolyn Jane Anderson and Brendan Dolan-Gavitt and Danish Contractor and Siva Reddy and Daniel Fried and Dzmitry Bahdanau and Yacine Jernite and Carlos Muñoz Ferrandis and Sean Hughes and Thomas Wolf and Arjun Guha and Leandro von Werra and Harm de Vries},
360
+ year={2023},
361
+ eprint={2305.06161},
362
+ archivePrefix={arXiv},
363
+ primaryClass={cs.CL}
364
+ }
365
+ ```