--- language: - sv license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Small - Swedish results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: null split: None metrics: - name: Wer type: wer value: 19.655292947218413 --- # Whisper Small - Swedish This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.3258 - Wer: 19.6553 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.048 | 2.59 | 2000 | 0.2925 | 20.3893 | | 0.0045 | 5.18 | 4000 | 0.3258 | 19.6553 | ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.12.1 - Datasets 2.7.1 - Tokenizers 0.13.2