--- language: - sv license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer metrics: - wer model-index: - name: Whisper Small - Swedish results: [] --- # Whisper Small - Swedish This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 & NST dataset. It achieves the following results on the evaluation set: - Loss: 0.3551 - Wer: 19.2143 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 8000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.2128 | 0.85 | 1000 | 0.2955 | 22.1613 | | 0.0871 | 1.71 | 2000 | 0.2790 | 20.8034 | | 0.0373 | 2.56 | 3000 | 0.2884 | 19.9269 | | 0.0163 | 3.41 | 4000 | 0.3082 | 19.5477 | | 0.0046 | 4.27 | 5000 | 0.3183 | 19.5881 | | 0.0023 | 5.12 | 6000 | 0.3397 | 19.3757 | | 0.0023 | 5.97 | 7000 | 0.3468 | 19.3219 | | 0.0013 | 6.83 | 8000 | 0.3551 | 19.2143 | ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.12.1 - Datasets 2.7.1 - Tokenizers 0.13.2