Add SetFit model
Browse files- 1_Pooling/config.json +10 -0
- README.md +305 -0
- config.json +32 -0
- config_sentence_transformers.json +10 -0
- config_setfit.json +4 -0
- model.safetensors +3 -0
- model_head.pkl +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +57 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": true,
|
4 |
+
"pooling_mode_mean_tokens": false,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,305 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: BAAI/bge-base-en-v1.5
|
3 |
+
library_name: setfit
|
4 |
+
metrics:
|
5 |
+
- accuracy
|
6 |
+
pipeline_tag: text-classification
|
7 |
+
tags:
|
8 |
+
- setfit
|
9 |
+
- sentence-transformers
|
10 |
+
- text-classification
|
11 |
+
- generated_from_setfit_trainer
|
12 |
+
widget:
|
13 |
+
- text: 'Reasoning for Good:
|
14 |
+
|
15 |
+
1. **Context Grounding**: The answer is supported by the document, which clearly
|
16 |
+
indicates that Forbes began reporting on Beyoncé''s earnings in 2008.
|
17 |
+
|
18 |
+
2. **Relevance**: The answer specifically addresses the question asked about who
|
19 |
+
began reporting Beyoncé''s annual earnings starting in 2008.
|
20 |
+
|
21 |
+
3. **Conciseness**: The answer is brief and directly to the point, without including
|
22 |
+
extraneous information.
|
23 |
+
|
24 |
+
|
25 |
+
Reasoning for Bad:
|
26 |
+
|
27 |
+
1. **Context Grounding**: While the statement is accurate, it introduces the aspect
|
28 |
+
of a "widespread misconception" about Times Magazine, which is not mentioned in
|
29 |
+
the provided document.
|
30 |
+
|
31 |
+
2. **Relevance**: The mention of Times Magazine might be seen as deviating slightly
|
32 |
+
from the question, which just asked about the first entity to begin reporting
|
33 |
+
Beyoncé''s earnings.
|
34 |
+
|
35 |
+
3. **Conciseness**: The answer could have been more concise by focusing solely
|
36 |
+
on Forbes without mentioning the misconception about Times Magazine.
|
37 |
+
|
38 |
+
|
39 |
+
Final result: Bad'
|
40 |
+
- text: 'The answer provided is:
|
41 |
+
|
42 |
+
|
43 |
+
"The average student at Notre Dame travels more than 750 miles to study there."
|
44 |
+
|
45 |
+
|
46 |
+
Reasoning:
|
47 |
+
|
48 |
+
|
49 |
+
**Good points:**
|
50 |
+
|
51 |
+
1. **Context Grounding**: The answer is supported by information present in the
|
52 |
+
document, which states, "the average student traveled more than 750 miles to Notre
|
53 |
+
Dame".
|
54 |
+
|
55 |
+
2. **Relevance**: The answer directly addresses the specific question asking about
|
56 |
+
the number of miles the average student travels to study at Notre Dame.
|
57 |
+
|
58 |
+
3. **Conciseness**: The answer is clear and to the point without any unnecessary
|
59 |
+
information.
|
60 |
+
|
61 |
+
|
62 |
+
**Bad points:**
|
63 |
+
|
64 |
+
- There are no bad points in this case as the answer aligns perfectly with all
|
65 |
+
the evaluation criteria.
|
66 |
+
|
67 |
+
|
68 |
+
Final Result: **Good**'
|
69 |
+
- text: 'Reasoning why the answer may be good:
|
70 |
+
|
71 |
+
- The answer correctly identifies Mick LaSalle as the writer for the San Francisco
|
72 |
+
Chronicle.
|
73 |
+
|
74 |
+
- The answer states that Mick LaSalle awarded "Spectre" a perfect score, which
|
75 |
+
is supported by the document.
|
76 |
+
|
77 |
+
|
78 |
+
Reasoning why the answer may be bad:
|
79 |
+
|
80 |
+
- The answer is concise and to the point, fulfilling the criteria for conciseness
|
81 |
+
and relevance.
|
82 |
+
|
83 |
+
- The document provided confirms that Mick LaSalle gave "Spectre" a perfect score
|
84 |
+
of 100.
|
85 |
+
|
86 |
+
- There is no deviation into unrelated topics, maintaining focus on the question
|
87 |
+
asked.
|
88 |
+
|
89 |
+
|
90 |
+
Final result: Good'
|
91 |
+
- text: "Reasoning: \n\nWhy the answer may be good:\n- The answer directly addresses\
|
92 |
+
\ the specific question asked, \"What New York borough contains the highest population\
|
93 |
+
\ of Asian-Americans?\" \n- It is well-supported by the given document, which\
|
94 |
+
\ states, \"The New York City borough of Queens is home to the state's largest\
|
95 |
+
\ Asian American population.\"\n- The answer is clear and concise without unnecessary\
|
96 |
+
\ information.\n\nWhy the answer may be bad:\n- There are no significant reasons\
|
97 |
+
\ to consider the answer bad based on the criteria provided. \n\nFinal Result:\
|
98 |
+
\ \n\nGood"
|
99 |
+
- text: "The answer may be good:\n- The information provided in the answer is supported\
|
100 |
+
\ by the document. \n\nThe answer may be bad:\n- The answer does not address the\
|
101 |
+
\ specific question asked which pertains to the year that Doctorate degrees were\
|
102 |
+
\ first granted at Notre Dame.\n- It deviates into unrelated information about\
|
103 |
+
\ the opening of a theology library, which is irrelevant to the question.\n\n\
|
104 |
+
Final result: Bad"
|
105 |
+
inference: true
|
106 |
+
model-index:
|
107 |
+
- name: SetFit with BAAI/bge-base-en-v1.5
|
108 |
+
results:
|
109 |
+
- task:
|
110 |
+
type: text-classification
|
111 |
+
name: Text Classification
|
112 |
+
dataset:
|
113 |
+
name: Unknown
|
114 |
+
type: unknown
|
115 |
+
split: test
|
116 |
+
metrics:
|
117 |
+
- type: accuracy
|
118 |
+
value: 0.8360655737704918
|
119 |
+
name: Accuracy
|
120 |
+
---
|
121 |
+
|
122 |
+
# SetFit with BAAI/bge-base-en-v1.5
|
123 |
+
|
124 |
+
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
|
125 |
+
|
126 |
+
The model has been trained using an efficient few-shot learning technique that involves:
|
127 |
+
|
128 |
+
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
129 |
+
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
130 |
+
|
131 |
+
## Model Details
|
132 |
+
|
133 |
+
### Model Description
|
134 |
+
- **Model Type:** SetFit
|
135 |
+
- **Sentence Transformer body:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5)
|
136 |
+
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
|
137 |
+
- **Maximum Sequence Length:** 512 tokens
|
138 |
+
- **Number of Classes:** 2 classes
|
139 |
+
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
140 |
+
<!-- - **Language:** Unknown -->
|
141 |
+
<!-- - **License:** Unknown -->
|
142 |
+
|
143 |
+
### Model Sources
|
144 |
+
|
145 |
+
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
146 |
+
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
147 |
+
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
148 |
+
|
149 |
+
### Model Labels
|
150 |
+
| Label | Examples |
|
151 |
+
|:------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
152 |
+
| 1 | <ul><li>'Reasoning why the answer may be good:\n1. **Context Grounding**: The answer is directly supported by the document, which explicitly states that "With almost every line of his epic Punica Silius references Virgil."\n2. **Relevance**: The answer specifically addresses the question asked by identifying the title of Silius Italicus\' epic where Virgil is frequently referenced.\n3. **Conciseness**: The answer is short, clear, and to the point, providing just the necessary information without any extraneous details.\n\nReasoning why the answer may be bad:\n- There is no evidence of deviation or lack of support from the provided document, the relevance is clearly maintained, and the answer concisely addresses the question.\n\nFinal Result: Good'</li><li>'Good'</li><li>'Reasoning:\n\nWhy the answer may be good:\n1. Context Grounding: The answer mentions "3,000 police," which correlates with the figure provided in the document regarding the number of French police that protected the Olympic torch relay.\n2. Relevance: The answer directly addresses the question, which asks about the number of police protecting the torch in France.\n3. Conciseness: The answer is brief and to the point without adding any unnecessary information.\n\nWhy the answer may be bad:\nThere is no evident issue with context grounding, relevance, or conciseness in the answer provided.\n\nFinal result: Good'</li></ul> |
|
153 |
+
| 0 | <ul><li>"**Reasoning Why the Answer May Be Good:**\n- The answer correctly identifies a person associated with vice-presidential and presidential roles at Notre Dame, although it attributes the wrong timeframe for the vice-presidency.\n\n**Reasoning Why the Answer May Be Bad:**\n- The document specifically mentions that John Francis O'Hara became vice-president in 1933, not James Edward O'Hara, indicating the answer is not well-supported by the provided document.\n- The answer provides incorrect and irrelevant information that does not address the specific question asked.\n- The question asked for the vice-president elected in 1933, and the answer incorrectly identifies the year 1934.\n\n**Final Result:**\nBad"</li><li>"Reasoning:\n1. **Context Grounding**: The document does provide the necessary information about the gross earnings of Beyoncé's second world tour. Therefore, the answer is well-supported by the document.\n2. **Relevance**: The answer directly responds to the specific question asked about the gross earnings of Beyoncé during her second world tour in 2009.\n3. **Conciseness**: The answer is concise and sticks to the point, providing the exact figure and relevant context about the record without additional unnecessary information.\n\nFinal Result: Good"</li><li>"Reasoning:\n\nWhy the answer may be good:\n- The answer specifies a borough of New York, which is relevant to the question.\n- It provides a specific claim about the population distribution of Asian-Americans within New York City boroughs.\n\nWhy the answer may be bad:\n- The provided document explicitly states that Queens is home to the state's largest Asian-American population, not Manhattan.\n- The answer does not align with the key information from the document, thus failing the test of context grounding.\n\nFinal Result: Bad"</li></ul> |
|
154 |
+
|
155 |
+
## Evaluation
|
156 |
+
|
157 |
+
### Metrics
|
158 |
+
| Label | Accuracy |
|
159 |
+
|:--------|:---------|
|
160 |
+
| **all** | 0.8361 |
|
161 |
+
|
162 |
+
## Uses
|
163 |
+
|
164 |
+
### Direct Use for Inference
|
165 |
+
|
166 |
+
First install the SetFit library:
|
167 |
+
|
168 |
+
```bash
|
169 |
+
pip install setfit
|
170 |
+
```
|
171 |
+
|
172 |
+
Then you can load this model and run inference.
|
173 |
+
|
174 |
+
```python
|
175 |
+
from setfit import SetFitModel
|
176 |
+
|
177 |
+
# Download from the 🤗 Hub
|
178 |
+
model = SetFitModel.from_pretrained("Netta1994/setfit_baai_squad_gpt-4o_improved-cot-instructions_two_reasoning_only_reasoning_17267")
|
179 |
+
# Run inference
|
180 |
+
preds = model("The answer may be good:
|
181 |
+
- The information provided in the answer is supported by the document.
|
182 |
+
|
183 |
+
The answer may be bad:
|
184 |
+
- The answer does not address the specific question asked which pertains to the year that Doctorate degrees were first granted at Notre Dame.
|
185 |
+
- It deviates into unrelated information about the opening of a theology library, which is irrelevant to the question.
|
186 |
+
|
187 |
+
Final result: Bad")
|
188 |
+
```
|
189 |
+
|
190 |
+
<!--
|
191 |
+
### Downstream Use
|
192 |
+
|
193 |
+
*List how someone could finetune this model on their own dataset.*
|
194 |
+
-->
|
195 |
+
|
196 |
+
<!--
|
197 |
+
### Out-of-Scope Use
|
198 |
+
|
199 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
200 |
+
-->
|
201 |
+
|
202 |
+
<!--
|
203 |
+
## Bias, Risks and Limitations
|
204 |
+
|
205 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
206 |
+
-->
|
207 |
+
|
208 |
+
<!--
|
209 |
+
### Recommendations
|
210 |
+
|
211 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
212 |
+
-->
|
213 |
+
|
214 |
+
## Training Details
|
215 |
+
|
216 |
+
### Training Set Metrics
|
217 |
+
| Training set | Min | Median | Max |
|
218 |
+
|:-------------|:----|:--------|:----|
|
219 |
+
| Word count | 1 | 91.8596 | 275 |
|
220 |
+
|
221 |
+
| Label | Training Sample Count |
|
222 |
+
|:------|:----------------------|
|
223 |
+
| 0 | 27 |
|
224 |
+
| 1 | 30 |
|
225 |
+
|
226 |
+
### Training Hyperparameters
|
227 |
+
- batch_size: (16, 16)
|
228 |
+
- num_epochs: (5, 5)
|
229 |
+
- max_steps: -1
|
230 |
+
- sampling_strategy: oversampling
|
231 |
+
- num_iterations: 20
|
232 |
+
- body_learning_rate: (2e-05, 2e-05)
|
233 |
+
- head_learning_rate: 2e-05
|
234 |
+
- loss: CosineSimilarityLoss
|
235 |
+
- distance_metric: cosine_distance
|
236 |
+
- margin: 0.25
|
237 |
+
- end_to_end: False
|
238 |
+
- use_amp: False
|
239 |
+
- warmup_proportion: 0.1
|
240 |
+
- l2_weight: 0.01
|
241 |
+
- seed: 42
|
242 |
+
- eval_max_steps: -1
|
243 |
+
- load_best_model_at_end: False
|
244 |
+
|
245 |
+
### Training Results
|
246 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
247 |
+
|:------:|:----:|:-------------:|:---------------:|
|
248 |
+
| 0.0070 | 1 | 0.1646 | - |
|
249 |
+
| 0.3497 | 50 | 0.2544 | - |
|
250 |
+
| 0.6993 | 100 | 0.1157 | - |
|
251 |
+
| 1.0490 | 150 | 0.0294 | - |
|
252 |
+
| 1.3986 | 200 | 0.0037 | - |
|
253 |
+
| 1.7483 | 250 | 0.0025 | - |
|
254 |
+
| 2.0979 | 300 | 0.0023 | - |
|
255 |
+
| 2.4476 | 350 | 0.002 | - |
|
256 |
+
| 2.7972 | 400 | 0.0018 | - |
|
257 |
+
| 3.1469 | 450 | 0.0017 | - |
|
258 |
+
| 3.4965 | 500 | 0.0016 | - |
|
259 |
+
| 3.8462 | 550 | 0.0017 | - |
|
260 |
+
| 4.1958 | 600 | 0.0016 | - |
|
261 |
+
| 4.5455 | 650 | 0.0015 | - |
|
262 |
+
| 4.8951 | 700 | 0.0016 | - |
|
263 |
+
|
264 |
+
### Framework Versions
|
265 |
+
- Python: 3.10.14
|
266 |
+
- SetFit: 1.1.0
|
267 |
+
- Sentence Transformers: 3.1.0
|
268 |
+
- Transformers: 4.44.0
|
269 |
+
- PyTorch: 2.4.1+cu121
|
270 |
+
- Datasets: 2.19.2
|
271 |
+
- Tokenizers: 0.19.1
|
272 |
+
|
273 |
+
## Citation
|
274 |
+
|
275 |
+
### BibTeX
|
276 |
+
```bibtex
|
277 |
+
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
278 |
+
doi = {10.48550/ARXIV.2209.11055},
|
279 |
+
url = {https://arxiv.org/abs/2209.11055},
|
280 |
+
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
281 |
+
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
282 |
+
title = {Efficient Few-Shot Learning Without Prompts},
|
283 |
+
publisher = {arXiv},
|
284 |
+
year = {2022},
|
285 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
286 |
+
}
|
287 |
+
```
|
288 |
+
|
289 |
+
<!--
|
290 |
+
## Glossary
|
291 |
+
|
292 |
+
*Clearly define terms in order to be accessible across audiences.*
|
293 |
+
-->
|
294 |
+
|
295 |
+
<!--
|
296 |
+
## Model Card Authors
|
297 |
+
|
298 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
299 |
+
-->
|
300 |
+
|
301 |
+
<!--
|
302 |
+
## Model Card Contact
|
303 |
+
|
304 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
305 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "BAAI/bge-base-en-v1.5",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"id2label": {
|
13 |
+
"0": "LABEL_0"
|
14 |
+
},
|
15 |
+
"initializer_range": 0.02,
|
16 |
+
"intermediate_size": 3072,
|
17 |
+
"label2id": {
|
18 |
+
"LABEL_0": 0
|
19 |
+
},
|
20 |
+
"layer_norm_eps": 1e-12,
|
21 |
+
"max_position_embeddings": 512,
|
22 |
+
"model_type": "bert",
|
23 |
+
"num_attention_heads": 12,
|
24 |
+
"num_hidden_layers": 12,
|
25 |
+
"pad_token_id": 0,
|
26 |
+
"position_embedding_type": "absolute",
|
27 |
+
"torch_dtype": "float32",
|
28 |
+
"transformers_version": "4.44.0",
|
29 |
+
"type_vocab_size": 2,
|
30 |
+
"use_cache": true,
|
31 |
+
"vocab_size": 30522
|
32 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.1.0",
|
4 |
+
"transformers": "4.44.0",
|
5 |
+
"pytorch": "2.4.1+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
config_setfit.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"labels": null,
|
3 |
+
"normalize_embeddings": false
|
4 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5cfc7851d7528eb096f1de3d22673a89f066049c9384a5575f0bd84ae3ecd875
|
3 |
+
size 437951328
|
model_head.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:196a38b2ca537665bab690eba83534ef3cc57d37598d373c339df8e953ae133b
|
3 |
+
size 7007
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": true
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": true,
|
48 |
+
"mask_token": "[MASK]",
|
49 |
+
"model_max_length": 512,
|
50 |
+
"never_split": null,
|
51 |
+
"pad_token": "[PAD]",
|
52 |
+
"sep_token": "[SEP]",
|
53 |
+
"strip_accents": null,
|
54 |
+
"tokenize_chinese_chars": true,
|
55 |
+
"tokenizer_class": "BertTokenizer",
|
56 |
+
"unk_token": "[UNK]"
|
57 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|