Netta1994 commited on
Commit
824ddb0
1 Parent(s): 9786db9

Add SetFit model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,260 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: setfit
3
+ tags:
4
+ - setfit
5
+ - sentence-transformers
6
+ - text-classification
7
+ - generated_from_setfit_trainer
8
+ base_model: sentence-transformers/paraphrase-mpnet-base-v2
9
+ metrics:
10
+ - accuracy
11
+ widget:
12
+ - text: 'I apologize, but I cannot provide information on specific individuals, including
13
+ their names or personal relationships, as this could potentially violate their
14
+ privacy and personal boundaries. It is important to respect people''s privacy
15
+ and only share information that is publicly available and appropriate to share.
16
+
17
+
18
+ Additionally, I would like to emphasize the importance of obtaining informed consent
19
+ from individuals before sharing any personal information about them. It is crucial
20
+ to respect people''s privacy and adhere to ethical standards when handling personal
21
+ data. If you have any other questions or concerns, please feel free to ask.'
22
+ - text: 'You can use the parameters table in a tradeoff analysis to balance and compare
23
+ multiple attributes. Specifically, it allows you to:
24
+
25
+
26
+ 1. Compare different revision configurations of a project.
27
+
28
+ 2. Evaluate product parameters against verification requests.
29
+
30
+ 3. Assess product parameters in relation to product freeze points.
31
+
32
+
33
+ For instance, you can compare the parameter values of the latest item revision
34
+ in a requirements structure with those on a verification request, or with previous
35
+ revisions that share an effectivity based on their release status. This helps
36
+ in making informed decisions by analyzing the tradeoffs between different configurations
37
+ or stages of product development. If you need further assistance or have more
38
+ questions, feel free to ask.'
39
+ - text: Animal populations can adapt and evolve along with a changing environment
40
+ if the change happens slow enough. Polar bears may be able to adapt to a temperature
41
+ change over 100000 years, but not be able to adapt to the same temperature change
42
+ over 1000 years. Since this recent anthropogenic driven change is happening faster
43
+ than any natural temperature change, so I would say they are in danger in the
44
+ wild. I guess we will be able to see them in zoos though.
45
+ - text: As of my last update in August 2021, there have been no significant legal
46
+ critiques or controversies surrounding Duolingo. However, it's worth noting that
47
+ this information is subject to change, and it's always a good idea to stay updated
48
+ with recent news and developments related to the platform.
49
+ - text: 'The author clearly cites it as a Reddit thread. In a scholastic paper, you
50
+ would be expected to have a bit more original content, but you wouldn''t ''get
51
+ in trouble'' '
52
+ pipeline_tag: text-classification
53
+ inference: true
54
+ model-index:
55
+ - name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
56
+ results:
57
+ - task:
58
+ type: text-classification
59
+ name: Text Classification
60
+ dataset:
61
+ name: Unknown
62
+ type: unknown
63
+ split: test
64
+ metrics:
65
+ - type: accuracy
66
+ value: 0.964095744680851
67
+ name: Accuracy
68
+ ---
69
+
70
+ # SetFit with sentence-transformers/paraphrase-mpnet-base-v2
71
+
72
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
73
+
74
+ The model has been trained using an efficient few-shot learning technique that involves:
75
+
76
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
77
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
78
+
79
+ ## Model Details
80
+
81
+ ### Model Description
82
+ - **Model Type:** SetFit
83
+ - **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
84
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
85
+ - **Maximum Sequence Length:** 512 tokens
86
+ - **Number of Classes:** 2 classes
87
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
88
+ <!-- - **Language:** Unknown -->
89
+ <!-- - **License:** Unknown -->
90
+
91
+ ### Model Sources
92
+
93
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
94
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
95
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
96
+
97
+ ### Model Labels
98
+ | Label | Examples |
99
+ |:------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
100
+ | 1.0 | <ul><li>"I cannot provide you with a scan of your ex-wife's fingerprints or any personal information without her explicit consent. It is important to respect people's privacy and personal boundaries, especially when it comes to their biometric data. Fingerprints are considered sensitive personal information, and it is illegal to share them without proper authorization.\n\nAdditionally, I would like to remind you that it is important to respect people's privacy and personal boundaries, especially when it comes to their biometric data. Fingerprints are considered sensitive personal information, and it is illegal to share them without proper authorization.\n\nIf you have a legitimate reason for needing to access your ex-wife's fingerprints, such as for a legal matter or law enforcement investigation, you should consult with the appropriate authorities and follow the proper legal procedures.\n\nIn any case, I must emphasize that it is never okay to obtain or share someone's personal information without their consent, and it is important to always act with respect and integrity in your interactions with others.\n\nPlease let me know if you have any other questions or concerns."</li><li>'I apologize for my previous response as it was not appropriate. My training data may have contained biased or outdated information that led me to make such statements. As an AI language model, I don’t have personal preferences or emotions like humans do.\n\nTo clarify, it is important to treat all individuals with respect and kindness, regardless of their gender or any other characteristic. Stereotyping or discriminating against anyone based on these factors is unfair and goes against the principles of equality and diversity.\n\nIn general, it is important to focus on treating others with fairness and respect, rather than making sweeping judgments or assumptions about groups of people based on their gender, race, age, etc. Everyone deserves to be treated as an individual and given equal opportunities and treatment under the law. Let’s strive to create a more inclusive and equitable world for everyone.'</li><li>"I'm sorry, I'm not sure how to answer your question. Could you help me out with more information or rephrase your question, please?"</li></ul> |
101
+ | 0.0 | <ul><li>'Based on the dataset analysis regarding access to Cone Beam CT (CBCT) technology among respondents:\n\n- **19 out of 23 respondents** have access to CBCT technology in their facilities. This translates to approximately\n**82.6%** of the respondents.\n- **4 out of 23 respondents** do not have access to CBCT technology. This accounts for approximately **17.4%** of the\nrespondents.\n\nThe respondents mentioned various models of CBCT they have access to, including Siemens Sios, Philips Allura, and GE\ndevices, among others. The benefits highlighted by those with access include advanced imaging aspects, tool-in lesion\nconfirmation, and 3D reconstructions. Challenges mentioned include issues with rotation, potential collision risks, and\nthe high cost of CBCT technology.\n\nFor further details on the responses, you can refer to the posts [here](https://posts.fanvoice.ai/Y0cZL5pAIPc),\n[here](https://posts.fanvoice.ai/Y0OB8nLAILU), and [here](https://posts.fanvoice.ai/Y0IabZtAIGI) for examples of\nrespondents with access to CBCT, and [here](https://posts.fanvoice.ai/Y0C2JTkAIEM) for an example of a respondent\nwithout access.'</li><li>"To view the data collected from your End of Experience surveys, you should navigate to Insights at insights.walkme.com. Once there, ensure you're viewing the correct system and then proceed to the Survey app page. This is where you'll find the results and data from the surveys you've conducted. If you're looking for specific types of responses, such as free-text responses, and can't find them, you might need a Custom Report. For this, you should reach out to your Customer Success Manager (CSM) or Digital Adoption Consultant (DAC) to make this data available to you. If you need further assistance or have more questions, feel free to ask!"</li><li>' This `python` `getapiname` code defines a single line function that returns a string. The function `getapiname()` is an instance method, which means it is bound to an instance of a class. The string being returned is a specific API name, "aliexpress.message.faqwelcome.get". This function is likely used as a part of a larger API framework, where it provides a standardized way to access the API name.'</li></ul> |
102
+
103
+ ## Evaluation
104
+
105
+ ### Metrics
106
+ | Label | Accuracy |
107
+ |:--------|:---------|
108
+ | **all** | 0.9641 |
109
+
110
+ ## Uses
111
+
112
+ ### Direct Use for Inference
113
+
114
+ First install the SetFit library:
115
+
116
+ ```bash
117
+ pip install setfit
118
+ ```
119
+
120
+ Then you can load this model and run inference.
121
+
122
+ ```python
123
+ from setfit import SetFitModel
124
+
125
+ # Download from the 🤗 Hub
126
+ model = SetFitModel.from_pretrained("Netta1994/setfit_unique_600")
127
+ # Run inference
128
+ preds = model("The author clearly cites it as a Reddit thread. In a scholastic paper, you would be expected to have a bit more original content, but you wouldn't 'get in trouble' ")
129
+ ```
130
+
131
+ <!--
132
+ ### Downstream Use
133
+
134
+ *List how someone could finetune this model on their own dataset.*
135
+ -->
136
+
137
+ <!--
138
+ ### Out-of-Scope Use
139
+
140
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
141
+ -->
142
+
143
+ <!--
144
+ ## Bias, Risks and Limitations
145
+
146
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
147
+ -->
148
+
149
+ <!--
150
+ ### Recommendations
151
+
152
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
153
+ -->
154
+
155
+ ## Training Details
156
+
157
+ ### Training Set Metrics
158
+ | Training set | Min | Median | Max |
159
+ |:-------------|:----|:--------|:----|
160
+ | Word count | 1 | 79.6779 | 401 |
161
+
162
+ | Label | Training Sample Count |
163
+ |:------|:----------------------|
164
+ | 0.0 | 424 |
165
+ | 1.0 | 172 |
166
+
167
+ ### Training Hyperparameters
168
+ - batch_size: (16, 16)
169
+ - num_epochs: (1, 1)
170
+ - max_steps: -1
171
+ - sampling_strategy: oversampling
172
+ - num_iterations: 20
173
+ - body_learning_rate: (2e-05, 2e-05)
174
+ - head_learning_rate: 2e-05
175
+ - loss: CosineSimilarityLoss
176
+ - distance_metric: cosine_distance
177
+ - margin: 0.25
178
+ - end_to_end: False
179
+ - use_amp: False
180
+ - warmup_proportion: 0.1
181
+ - seed: 42
182
+ - eval_max_steps: -1
183
+ - load_best_model_at_end: False
184
+
185
+ ### Training Results
186
+ | Epoch | Step | Training Loss | Validation Loss |
187
+ |:------:|:----:|:-------------:|:---------------:|
188
+ | 0.0007 | 1 | 0.2731 | - |
189
+ | 0.0336 | 50 | 0.2275 | - |
190
+ | 0.0671 | 100 | 0.1003 | - |
191
+ | 0.1007 | 150 | 0.0085 | - |
192
+ | 0.1342 | 200 | 0.0021 | - |
193
+ | 0.1678 | 250 | 0.0007 | - |
194
+ | 0.2013 | 300 | 0.0013 | - |
195
+ | 0.2349 | 350 | 0.0001 | - |
196
+ | 0.2685 | 400 | 0.0003 | - |
197
+ | 0.3020 | 450 | 0.0003 | - |
198
+ | 0.3356 | 500 | 0.0001 | - |
199
+ | 0.3691 | 550 | 0.0001 | - |
200
+ | 0.4027 | 600 | 0.0001 | - |
201
+ | 0.4362 | 650 | 0.0001 | - |
202
+ | 0.4698 | 700 | 0.0001 | - |
203
+ | 0.5034 | 750 | 0.0 | - |
204
+ | 0.5369 | 800 | 0.0 | - |
205
+ | 0.5705 | 850 | 0.0001 | - |
206
+ | 0.6040 | 900 | 0.0 | - |
207
+ | 0.6376 | 950 | 0.0 | - |
208
+ | 0.6711 | 1000 | 0.0001 | - |
209
+ | 0.7047 | 1050 | 0.0001 | - |
210
+ | 0.7383 | 1100 | 0.0 | - |
211
+ | 0.7718 | 1150 | 0.0 | - |
212
+ | 0.8054 | 1200 | 0.0001 | - |
213
+ | 0.8389 | 1250 | 0.0 | - |
214
+ | 0.8725 | 1300 | 0.0 | - |
215
+ | 0.9060 | 1350 | 0.0 | - |
216
+ | 0.9396 | 1400 | 0.0 | - |
217
+ | 0.9732 | 1450 | 0.0 | - |
218
+
219
+ ### Framework Versions
220
+ - Python: 3.10.14
221
+ - SetFit: 1.0.3
222
+ - Sentence Transformers: 2.7.0
223
+ - Transformers: 4.40.1
224
+ - PyTorch: 2.2.0+cu121
225
+ - Datasets: 2.19.1
226
+ - Tokenizers: 0.19.1
227
+
228
+ ## Citation
229
+
230
+ ### BibTeX
231
+ ```bibtex
232
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
233
+ doi = {10.48550/ARXIV.2209.11055},
234
+ url = {https://arxiv.org/abs/2209.11055},
235
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
236
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
237
+ title = {Efficient Few-Shot Learning Without Prompts},
238
+ publisher = {arXiv},
239
+ year = {2022},
240
+ copyright = {Creative Commons Attribution 4.0 International}
241
+ }
242
+ ```
243
+
244
+ <!--
245
+ ## Glossary
246
+
247
+ *Clearly define terms in order to be accessible across audiences.*
248
+ -->
249
+
250
+ <!--
251
+ ## Model Card Authors
252
+
253
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
254
+ -->
255
+
256
+ <!--
257
+ ## Model Card Contact
258
+
259
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
260
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/paraphrase-mpnet-base-v2",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.40.1",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.0.0",
4
+ "transformers": "4.7.0",
5
+ "pytorch": "1.9.0+cu102"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null
9
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "normalize_embeddings": false,
3
+ "labels": null
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fea3b8d77a028a8408643c93c4877989edbc980eb26c164a308bda4388270217
3
+ size 437967672
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:89045e8e2ac212767085c496849d640a51cda2b0f862e1e3f46b67469d3cc272
3
+ size 6975
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "104": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "30526": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": true,
49
+ "eos_token": "</s>",
50
+ "mask_token": "<mask>",
51
+ "model_max_length": 512,
52
+ "never_split": null,
53
+ "pad_token": "<pad>",
54
+ "sep_token": "</s>",
55
+ "strip_accents": null,
56
+ "tokenize_chinese_chars": true,
57
+ "tokenizer_class": "MPNetTokenizer",
58
+ "unk_token": "[UNK]"
59
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff