davidmezzetti commited on
Commit
8c124a4
1 Parent(s): f2d8356

Initial version

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false
7
+ }
README.md ADDED
@@ -0,0 +1,149 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pipeline_tag: sentence-similarity
3
+ tags:
4
+ - sentence-transformers
5
+ - feature-extraction
6
+ - sentence-similarity
7
+ - transformers
8
+ language: en
9
+ license: apache-2.0
10
+ ---
11
+
12
+ # PubMedBERT Embeddings
13
+
14
+ This is a [PubMedBERT-base](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) model fined-tuned using [sentence-transformers](https://www.SBERT.net). It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. The training dataset was generated using a random sample of [PubMed](https://pubmed.ncbi.nlm.nih.gov/) title-abstract pairs along with similar title pairs.
15
+
16
+ PubMedBERT Embeddings produces higher quality embeddings than generalized models for medical literature. Further fine-tuning for a medical subdomain will result in even better performance.
17
+
18
+ ## Usage (txtai)
19
+
20
+ This model can be used to build embeddings databases with [txtai](https://github.com/neuml/txtai) for semantic search and/or as a knowledge source for retrieval augmented generation (RAG).
21
+
22
+ ```python
23
+ import txtai
24
+
25
+ embeddings = txtai.Embeddings(path="neuml/pubmedbert-base-embeddings", content=True)
26
+ embeddings.index(documents())
27
+
28
+ # Run a query
29
+ embeddings.search("query to run")
30
+ ```
31
+
32
+ ## Usage (Sentence-Transformers)
33
+
34
+ Alternatively, the model can be loaded with [sentence-transformers](https://www.SBERT.net).
35
+
36
+ ```python
37
+ from sentence_transformers import SentenceTransformer
38
+ sentences = ["This is an example sentence", "Each sentence is converted"]
39
+
40
+ model = SentenceTransformer("neuml/pubmedbert-base-embeddings")
41
+ embeddings = model.encode(sentences)
42
+ print(embeddings)
43
+ ```
44
+
45
+ ## Usage (Hugging Face Transformers)
46
+
47
+ The model can also be used directly with Transformers.
48
+
49
+ ```python
50
+ from transformers import AutoTokenizer, AutoModel
51
+ import torch
52
+
53
+ # Mean Pooling - Take attention mask into account for correct averaging
54
+ def meanpooling(output, mask):
55
+ embeddings = output[0] # First element of model_output contains all token embeddings
56
+ mask = mask.unsqueeze(-1).expand(embeddings.size()).float()
57
+ return torch.sum(embeddings * mask, 1) / torch.clamp(mask.sum(1), min=1e-9)
58
+
59
+ # Sentences we want sentence embeddings for
60
+ sentences = ['This is an example sentence', 'Each sentence is converted']
61
+
62
+ # Load model from HuggingFace Hub
63
+ tokenizer = AutoTokenizer.from_pretrained("neuml/pubmedbert-base-embeddings")
64
+ model = AutoModel.from_pretrained("neuml/pubmedbert-base-embeddings")
65
+
66
+ # Tokenize sentences
67
+ inputs = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
68
+
69
+ # Compute token embeddings
70
+ with torch.no_grad():
71
+ output = model(**inputs)
72
+
73
+ # Perform pooling. In this case, mean pooling.
74
+ embeddings = meanpooling(output, inputs['attention_mask'])
75
+
76
+ print("Sentence embeddings:")
77
+ print(embeddings)
78
+ ```
79
+
80
+ ## Evaluation Results
81
+
82
+ Performance of this model compared to the top base models on the [MTEB leaderboard](https://huggingface.co/spaces/mteb/leaderboard) is shown below. A popular smaller model was also evaluated along with the most downloaded PubMed similarity model on the Hugging Face Hub.
83
+
84
+ The following datasets were used to evaluate model performance.
85
+
86
+ - [PubMed QA](https://huggingface.co/datasets/pubmed_qa)
87
+ - Subset: pqa_labeled, Split: train, Pair: (question, long_answer)
88
+ - [PubMed Subset](https://huggingface.co/datasets/zxvix/pubmed_subset_new)
89
+ - Split: test, Pair: (title, text)
90
+ - [PubMed Summary](https://huggingface.co/datasets/scientific_papers)
91
+ - Subset: pubmed, Split: validation, Pair: (article, abstract)
92
+
93
+ Evaluation results are shown below. The [Pearson correlation coefficient](https://en.wikipedia.org/wiki/Pearson_correlation_coefficient) is used as the evaluation metric.
94
+
95
+ | Model | PubMed QA | PubMed Subset | PubMed Summary | Average |
96
+ | ----------------------------------------------------------------------------- | --------- | ------------- | -------------- | --------- |
97
+ | [all-MiniLM-L6-v2](https://hf.co/sentence-transformers/all-MiniLM-L6-v2) | 90.40 | 95.86 | 94.07 | 93.44 |
98
+ | [bge-base-en-v1.5](https://hf.co/BAAI/bge-large-en-v1.5) | 91.02 | 95.60 | 94.49 | 93.70 |
99
+ | [gte-base](https://hf.co/thenlper/gte-base) | 92.97 | 96.83 | 96.24 | 95.35 |
100
+ | [pubmedbert-base-embeddings](https://hf.co/neuml/pubmedbert-base-embeddings) | **93.27** | **97.07** | **96.58** | **95.64** |
101
+ | [S-PubMedBert-MS-MARCO](https://hf.co/pritamdeka/S-PubMedBert-MS-MARCO) | 90.86 | 93.33 | 93.54 | 92.58 |
102
+
103
+ ## Training
104
+
105
+ The model was trained with the parameters:
106
+
107
+ **DataLoader**:
108
+
109
+ `torch.utils.data.dataloader.DataLoader` of length 20191 with parameters:
110
+ ```
111
+ {'batch_size': 24, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
112
+ ```
113
+
114
+ **Loss**:
115
+
116
+ `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
117
+ ```
118
+ {'scale': 20.0, 'similarity_fct': 'cos_sim'}
119
+ ```
120
+
121
+ Parameters of the fit()-Method:
122
+ ```
123
+ {
124
+ "epochs": 1,
125
+ "evaluation_steps": 500,
126
+ "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
127
+ "max_grad_norm": 1,
128
+ "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
129
+ "optimizer_params": {
130
+ "lr": 2e-05
131
+ },
132
+ "scheduler": "WarmupLinear",
133
+ "steps_per_epoch": null,
134
+ "warmup_steps": 10000,
135
+ "weight_decay": 0.01
136
+ }
137
+ ```
138
+
139
+ ## Full Model Architecture
140
+ ```
141
+ SentenceTransformer(
142
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
143
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
144
+ )
145
+ ```
146
+
147
+ ## More Information
148
+
149
+ Read more about this model and how it was built in [this article](https://medium.com/neuml/embeddings-for-medical-literature-74dae6abf5e0).
added_tokens.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "[CLS]": 2,
3
+ "[MASK]": 4,
4
+ "[PAD]": 0,
5
+ "[SEP]": 3,
6
+ "[UNK]": 1
7
+ }
config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 768,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 3072,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 12,
18
+ "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "torch_dtype": "float32",
21
+ "transformers_version": "4.34.0",
22
+ "type_vocab_size": 2,
23
+ "use_cache": true,
24
+ "vocab_size": 30522
25
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.2.2",
4
+ "transformers": "4.34.0",
5
+ "pytorch": "2.0.1+cu117"
6
+ }
7
+ }
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0bdb9787bcb608f0e4dbfa2724821b7d66a66be79508bff915a9d2e3fe1f3853
3
+ size 437995689
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
similarity_evaluation_results.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ epoch,steps,cosine_pearson,cosine_spearman,euclidean_pearson,euclidean_spearman,manhattan_pearson,manhattan_spearman,dot_pearson,dot_spearman
2
+ -1,-1,0.9616227888194525,0.8655338878240353,0.9392462019157571,0.865178743767881,0.9391683403350186,0.8652078047869656,0.9520250497966435,0.8654981897193533
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "additional_special_tokens": [],
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "[CLS]",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": true,
49
+ "mask_token": "[MASK]",
50
+ "model_max_length": 1000000000000000019884624838656,
51
+ "never_split": null,
52
+ "pad_token": "[PAD]",
53
+ "sep_token": "[SEP]",
54
+ "strip_accents": null,
55
+ "tokenize_chinese_chars": true,
56
+ "tokenizer_class": "BertTokenizer",
57
+ "unk_token": "[UNK]"
58
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff