File size: 4,476 Bytes
4703b67
 
4891e1c
 
 
aaeb69e
 
4891e1c
 
 
 
4703b67
4891e1c
4af749a
f799c4b
875319a
8985d4d
b462949
71a0868
89a45d0
e2c842c
16d9ba8
f8d0fed
1f304e9
 
ad7076a
f8d0fed
b462949
4891e1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e2c842c
 
4891e1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aaeb69e
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
---
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
datasets:
- NeuralNovel/Neural-Story-v1
base_model: alnrg2arg/blockchainlabs_7B_merged_test2_4
model-index:
- name: qlora-out
  results: []
---

![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/645cfe4603fc86c46b3e46d1/CATNxzDDJL6xHR4tc4IMf.jpeg)

# NeuralNovel/Valor-7B-v0.1

Valor speaks louder than words.

This is a qlora finetune of blockchainlabs_7B_merged_test2_4 using the **Neural-Story-v0.1** dataset, with the intention of increasing creativity and writing ability.

[Join our Discord!](https://discord.gg/rJXGjmxqzS)

<a href='https://ko-fi.com/S6S2UH2TC' target='_blank'><img height='36' style='border:0px;height:36px;' src='https://storage.ko-fi.com/cdn/kofi1.png?v=3' border='0' alt='Buy Me a Coffee at ko-fi.com' /></a>

![image/png](https://cdn-uploads.huggingface.co/production/uploads/645cfe4603fc86c46b3e46d1/uW7SQrWBXv-CURsEKJerW.png)
# Training Details
 
```yaml
base_model: alnrg2arg/blockchainlabs_7B_merged_test2_4
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
is_mistral_derived_model: true

load_in_8bit: false
load_in_4bit: true
strict: false

datasets:
  - path: NeuralNovel/Neural-Story-v1
    type: completion
dataset_prepared_path: last_run_prepared
val_set_size: 0.1
output_dir: ./qlora-out

adapter: qlora
lora_model_dir:

sequence_len: 8192
sample_packing: false
pad_to_sequence_len: true

lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_target_modules:
  - gate_proj
  - down_proj
  - up_proj
  - q_proj
  - v_proj
  - k_proj
  - o_proj

wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002

train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3

warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_table_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
  bos_token: "<s>"
  eos_token: "</s>"
  unk_token: "<unk>"

```

</details><br>

# qlora-out

This model is a fine-tuned version of [alnrg2arg/blockchainlabs_7B_merged_test2_4](https://huggingface.co/alnrg2arg/blockchainlabs_7B_merged_test2_4) on the Neural-Story-v1.
It achieves the following results on the evaluation set:
- Loss: 2.1411

axolotl version: `0.3.0`

The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 1

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.3251        | 0.06  | 1    | 2.8409          |
| 2.5318        | 0.25  | 4    | 2.7634          |
| 1.7316        | 0.51  | 8    | 2.3662          |
| 1.5196        | 0.76  | 12   | 2.1411          |


### Framework versions

- PEFT 0.7.0
- Transformers 4.37.0.dev0
- Pytorch 2.0.1+cu117
- Datasets 2.16.1
- Tokenizers 0.15.0
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_NeuralNovel__Valor-7B-v0.1)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |74.21|
|AI2 Reasoning Challenge (25-Shot)|72.27|
|HellaSwag (10-Shot)              |86.59|
|MMLU (5-Shot)                    |64.09|
|TruthfulQA (0-shot)              |69.84|
|Winogrande (5-shot)              |83.35|
|GSM8k (5-shot)                   |69.14|