Neutralzz commited on
Commit
e5b0cac
1 Parent(s): 9486ffd

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +47 -0
README.md ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ ---
4
+
5
+ # BiLLa: A Bilingual LLaMA with Enhanced Reasoning Ability
6
+
7
+ BiLLa is an open-source reasoning-enhanced bilingual LLaMA model. The main features are:
8
+ - Greatly improve the ability of Chinese language modeling, and minimize the damage to the original English ability of LLaMA;
9
+ - During the training, more task data is added with ChatGPT-generated analysis;
10
+ - Full-parameter optimization for better performance.
11
+
12
+ Github: https://github.com/Neutralzz/BiLLa
13
+
14
+ <b>Note</b>: Due to LLaMA's license, the model weights in this hub cannot be used directly.
15
+ The weight of `word embedding` is the sum of the weights of the trained model and the original LLaMA,
16
+ so as to ensure that developers with LLaMA original model accessibility can convert the model released by this hub into a usable one.
17
+
18
+ First, you can revert the model weights by [this script](https://github.com/Neutralzz/BiLLa/blob/main/embedding_convert.py):
19
+ ```shell
20
+ python3 embedding_convert.py \
21
+ --model_dir /path_to_BiLLa/BiLLa-7B-LLM \
22
+ --meta_llama_pth_file /path_to_LLaMA/llama-7b/consolidated.00.pth
23
+ ```
24
+
25
+ Then, you can run this model as follows:
26
+ ```python
27
+ import torch
28
+ from transformers import AutoTokenizer, AutoModelForCausalLM
29
+ model_path = "/path_to_BiLLa/BiLLa-7B-LLM"
30
+ tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
31
+ model = AutoModelForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, torch_dtype=torch.float16).cuda()
32
+
33
+ prompt = "[Your prompt]"
34
+ input_ids = tokenizer([prompt]).input_ids
35
+ output_ids = model.generate(
36
+ torch.as_tensor(input_ids).cuda(),
37
+ do_sample=True,
38
+ temperature=0.7,
39
+ max_new_tokens=1024
40
+ )
41
+ output_ids = output_ids[0][len(input_ids[0]):]
42
+
43
+ outputs = tokenizer.decode(output_ids, skip_special_tokens=True).strip()
44
+ print(outputs)
45
+ ```
46
+
47
+ Different from [BiLLa-7B-SFT](https://huggingface.co/Neutralzz/BiLLa-7B-SFT), the input format of `BiLLa-7B-LLM` has no restriction.