---
library_name: peft
license: apache-2.0
base_model: allura-org/TQ2.5-14B-Sugarquill-v1
tags:
- axolotl
- generated_from_trainer
datasets:
- Nitral-AI/Creative_Writing-ShareGPT
- Nitral-AI/ARES-ShareGPT
- NewEden/Claude-Instruct-5K
- NewEden/OpenCAI-ShareGPT
- NewEden/PIPPA-Mega-Filtered
- NewEden/Roleplay-Logs-Sharegpt-Ngram-cleaned
- Nitral-AI/Creative_Writing-ShareGPT
model-index:
- name: control-14b-lora
results: []
---
[](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config
axolotl version: `0.6.0`
```yaml
base_model: allura-org/TQ2.5-14B-Sugarquill-v1
strict: false
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_swiglu: true
liger_fused_linear_cross_entropy: false
liger_cross_entropy: false
# Output and HuggingFace
hub_model_id: NewEden/control-14b-lora
hf_use_auth_token: true
hub_strategy: "all_checkpoints"
output_dir: ./outputs/
wandb_project: huggingface
wandb_entity:
wandb_name: Control-14B
chat_template: chatml
group_by_length: false
datasets:
- path: Nitral-AI/Creative_Writing-ShareGPT
type: chat_template
roles_to_train: ["gpt"]
field_messages: conversations
message_field_role: from
message_field_content: value
train_on_eos: turn
- path: Nitral-AI/ARES-ShareGPT
type: chat_template
chat_template: chatml
roles_to_train: ["gpt"]
field_messages: conversations
message_field_role: from
message_field_content: value
train_on_eos: turn
- path: NewEden/Claude-Instruct-5K
type: chat_template
chat_template: chatml
roles_to_train: ["gpt"]
field_messages: conversations
message_field_role: from
message_field_content: value
train_on_eos: turn
- path: NewEden/OpenCAI-ShareGPT
type: chat_template
roles_to_train: ["gpt"]
field_messages: conversations
message_field_role: from
message_field_content: value
train_on_eos: turn
- path: NewEden/PIPPA-Mega-Filtered
type: chat_template
chat_template: chatml
roles_to_train: ["gpt"]
field_messages: conversations
message_field_role: from
message_field_content: value
train_on_eos: turn
- path: NewEden/Roleplay-Logs-Sharegpt-Ngram-cleaned
type: chat_template
chat_template: chatml
roles_to_train: ["gpt"]
field_messages: conversations
message_field_role: from
message_field_content: value
train_on_eos: turn
- path: Nitral-AI/Creative_Writing-ShareGPT
type: chat_template
chat_template: chatml
roles_to_train: ["gpt"]
field_messages: conversations
message_field_role: from
message_field_content: value
train_on_eos: turn
#val_set_size: 0.01
#evals_per_epoch: 1
# eval_table_size:
# eval_max_new_tokens: 128
num_epochs: 2
sequence_len: 8192
save_safetensors: true
saves_per_epoch: 2
logging_steps: 1
special_tokens:
# Quantization
bf16: auto
fp16:
tf32: false
## For LoRA
load_in_8bit: false
load_in_4bit: True
# LoRA
peft_use_rslora: true
adapter: qlora
lora_model_dir:
lora_r: 128
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_target_modules:
## if oom
# lora_r: 64
# lora_alpha: 32
# lora_dropout: 0.1
weight_decay: 0.02
max_grad_norm: 1.0
warmup_ratio: 0.05
learning_rate: 0.00002
lr_scheduler: cosine
#lr_scheduler_kwargs:
optimizer: paged_adamw_8bit # usually adamw_torch or paged_adamw_8bit
## Batch Size
gradient_accumulation_steps: 8
micro_batch_size: 1
eval_batch_size: 1
# Optimizations
pad_to_sequence_len: true
sample_packing: true
eval_sample_packing: false
flash_attention: true
xformers_attention:
gradient_checkpointing: "unsloth"
gradient_checkpointing_kwargs:
use_reentrant: true
local_rank:
early_stopping_patience:
debug:
special_tokens:
pad_token: <|endoftext|>
eos_token: <|im_end|>
```
# control-14b-lora
This model is a fine-tuned version of [allura-org/TQ2.5-14B-Sugarquill-v1](https://huggingface.co/allura-org/TQ2.5-14B-Sugarquill-v1) on the Nitral-AI/Creative_Writing-ShareGPT, the Nitral-AI/ARES-ShareGPT, the NewEden/Claude-Instruct-5K, the NewEden/OpenCAI-ShareGPT, the NewEden/PIPPA-Mega-Filtered, the NewEden/Roleplay-Logs-Sharegpt-Ngram-cleaned and the Nitral-AI/Creative_Writing-ShareGPT datasets.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 43
- num_epochs: 2
### Training results
### Framework versions
- PEFT 0.14.0
- Transformers 4.47.1
- Pytorch 2.3.1+cu121
- Datasets 3.1.0
- Tokenizers 0.21.0