--- library_name: peft license: apache-2.0 base_model: TinyLlama/TinyLlama-1.1B-Chat-v0.6 tags: - axolotl - generated_from_trainer model-index: - name: e1729cec-1158-465c-80af-cf1fcb732574 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: TinyLlama/TinyLlama-1.1B-Chat-v0.6 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - f01fed07670c5379_train_data.json ds_type: json format: custom path: /workspace/input_data/f01fed07670c5379_train_data.json type: field_input: input field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: Nexspear/e1729cec-1158-465c-80af-cf1fcb732574 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 5.0e-05 load_in_4bit: false load_in_8bit: false local_rank: 0 logging_steps: 3 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_steps: 500 micro_batch_size: 8 mlflow_experiment_name: /tmp/f01fed07670c5379_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: leixa-personal wandb_mode: online wandb_name: 10ca5ef2-ff17-476a-92a2-d039d8d05243 wandb_project: Gradients-On-Four wandb_run: your_name wandb_runid: 10ca5ef2-ff17-476a-92a2-d039d8d05243 warmup_steps: 10 weight_decay: 0.01 xformers_attention: null ```

# e1729cec-1158-465c-80af-cf1fcb732574 This model is a fine-tuned version of [TinyLlama/TinyLlama-1.1B-Chat-v0.6](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v0.6) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0889 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0001 | 1 | 1.1609 | | 1.0855 | 0.0063 | 42 | 1.1297 | | 1.0373 | 0.0126 | 84 | 1.1157 | | 1.177 | 0.0189 | 126 | 1.1069 | | 1.1124 | 0.0252 | 168 | 1.1012 | | 1.0302 | 0.0315 | 210 | 1.0972 | | 1.1041 | 0.0378 | 252 | 1.0943 | | 1.0171 | 0.0440 | 294 | 1.0924 | | 1.0916 | 0.0503 | 336 | 1.0907 | | 1.0477 | 0.0566 | 378 | 1.0897 | | 1.1333 | 0.0629 | 420 | 1.0891 | | 1.1253 | 0.0692 | 462 | 1.0889 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1