evan-nexusflow
commited on
Commit
•
4d7a1e9
1
Parent(s):
f12e910
Update README.md
Browse files
README.md
CHANGED
@@ -16,8 +16,8 @@ tags:
|
|
16 |
</p>
|
17 |
|
18 |
|
19 |
-
We introduce Athene-V2-Chat-72B, an open-weights LLM
|
20 |
-
Athene-V2-Chat-72B excels in chat, math and coding. Its sister model, [Athene-V2-Agent-72B](https://huggingface.co/Nexusflow/Athene-V2-Chat), surpasses GPT-4o in complex function calling and
|
21 |
|
22 |
Benchmark performance:
|
23 |
|
@@ -27,12 +27,13 @@ Benchmark performance:
|
|
27 |
|
28 |
- **Developed by:** The Nexusflow Team
|
29 |
- **Model type:** Chat Model
|
30 |
-
- **Finetuned from model:** [Qwen 2.5 72B](https://huggingface.co/Qwen/Qwen2.5-72B-Instruct)
|
31 |
- **License**: [Nexusflow Research License](https://huggingface.co/Nexusflow/Athene-V2-Chat/blob/main/Nexusflow_Research_License_.pdf)
|
32 |
- **Blog**: https://nexusflow.ai/blogs/athene-V2
|
33 |
|
34 |
## Usage
|
35 |
Athene-V2-Chat uses the same chat template as Qwen 2.5 72B. Below is an example simple usage using the Transformers library.
|
|
|
36 |
```Python
|
37 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
38 |
|
@@ -45,21 +46,25 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
45 |
)
|
46 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
47 |
|
48 |
-
prompt = "
|
|
|
49 |
messages = [
|
50 |
{"role": "user", "content": prompt}
|
51 |
]
|
|
|
52 |
text = tokenizer.apply_chat_template(
|
53 |
messages,
|
54 |
tokenize=False,
|
55 |
add_generation_prompt=True
|
56 |
)
|
|
|
57 |
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
58 |
|
59 |
generated_ids = model.generate(
|
60 |
**model_inputs,
|
61 |
-
max_new_tokens=
|
62 |
)
|
|
|
63 |
generated_ids = [
|
64 |
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
65 |
]
|
@@ -67,7 +72,7 @@ generated_ids = [
|
|
67 |
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
68 |
```
|
69 |
|
70 |
-
|
71 |
|
72 |
## Acknowledgment
|
73 |
We would like to thank the [LMSYS Organization](https://lmsys.org/) for their support of testing the model. We would like to thank Qwen Team and the open source community for their efforts in providing the datasets and base models.
|
|
|
16 |
</p>
|
17 |
|
18 |
|
19 |
+
We introduce Athene-V2-Chat-72B, an open-weights LLM on-par with GPT-4o across benchmarks. It is trained through RLHF with Qwen-2.5-72B-Instruct as base model.
|
20 |
+
Athene-V2-Chat-72B excels in chat, math, and coding. Its sister model, [Athene-V2-Agent-72B](https://huggingface.co/Nexusflow/Athene-V2-Chat), surpasses GPT-4o in complex function calling and agentic applications.
|
21 |
|
22 |
Benchmark performance:
|
23 |
|
|
|
27 |
|
28 |
- **Developed by:** The Nexusflow Team
|
29 |
- **Model type:** Chat Model
|
30 |
+
- **Finetuned from model:** [Qwen 2.5 72B-Instruct](https://huggingface.co/Qwen/Qwen2.5-72B-Instruct)
|
31 |
- **License**: [Nexusflow Research License](https://huggingface.co/Nexusflow/Athene-V2-Chat/blob/main/Nexusflow_Research_License_.pdf)
|
32 |
- **Blog**: https://nexusflow.ai/blogs/athene-V2
|
33 |
|
34 |
## Usage
|
35 |
Athene-V2-Chat uses the same chat template as Qwen 2.5 72B. Below is an example simple usage using the Transformers library.
|
36 |
+
|
37 |
```Python
|
38 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
39 |
|
|
|
46 |
)
|
47 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
48 |
|
49 |
+
prompt = "Write a Python function to return the nth Fibonacci number in log n runtime."
|
50 |
+
|
51 |
messages = [
|
52 |
{"role": "user", "content": prompt}
|
53 |
]
|
54 |
+
|
55 |
text = tokenizer.apply_chat_template(
|
56 |
messages,
|
57 |
tokenize=False,
|
58 |
add_generation_prompt=True
|
59 |
)
|
60 |
+
|
61 |
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
62 |
|
63 |
generated_ids = model.generate(
|
64 |
**model_inputs,
|
65 |
+
max_new_tokens=2048
|
66 |
)
|
67 |
+
|
68 |
generated_ids = [
|
69 |
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
70 |
]
|
|
|
72 |
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
73 |
```
|
74 |
|
75 |
+
Note that by adding a system prompt that encourages the model to think step by step, the model can improve further on difficult math queries and problems like counting `r`s in strawberry. For fairness consideration we **do not** include such system prompt during chat evaluation.
|
76 |
|
77 |
## Acknowledgment
|
78 |
We would like to thank the [LMSYS Organization](https://lmsys.org/) for their support of testing the model. We would like to thank Qwen Team and the open source community for their efforts in providing the datasets and base models.
|