File size: 875 Bytes
613badd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
from typing import Dict, List, Any
from transformers import pipeline
import holidays

class PreTrainedPipeline():
    def __init__(self, path=""):
        self.pipeline = pipeline("text-classification",model=path)
        self.holidays = holidays.US()

    def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
        """
       data args:
            inputs (:obj: `str`)
            date (:obj: `str`)
      Return:
            A :obj:`list` | `dict`: will be serialized and returned
        """
        # get inputs
        inputs = data.pop("inputs",data)
        date = data.pop("date", None)

        # check if date exists and if it is holiday
        if date is not None and date in self.holidays:
          return [{"label": "happy", "score": 1}]


        # run normal prediction
        prediction = self.pipeline(inputs)
        return prediction