--- library_name: transformers license: apache-2.0 base_model: alignment-handbook/zephyr-7b-sft-full tags: - alignment-handbook - trl - dpo - generated_from_trainer - trl - dpo - generated_from_trainer datasets: - HuggingFaceH4/ultrafeedback_binarized model-index: - name: zephyr-7b-uf-dpo-2e results: [] --- # zephyr-7b-uf-dpo-2e This model is a fine-tuned version of [alignment-handbook/zephyr-7b-sft-full](https://huggingface.co/alignment-handbook/zephyr-7b-sft-full) on the HuggingFaceH4/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set: - Loss: 0.5017 - Rewards/chosen: -1.6430 - Rewards/rejected: -2.9109 - Rewards/accuracies: 0.7891 - Rewards/margins: 1.2679 - Logps/rejected: -553.7540 - Logps/chosen: -426.9287 - Logits/rejected: 2.3524 - Logits/chosen: 1.4100 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.5424 | 0.5021 | 120 | 0.5378 | -0.5794 | -1.3437 | 0.7578 | 0.7642 | -397.0288 | -320.5744 | -0.5261 | -0.7461 | | 0.4857 | 1.0042 | 240 | 0.5071 | -0.9384 | -1.8536 | 0.7695 | 0.9153 | -448.0264 | -356.4662 | 0.8934 | 0.1618 | | 0.3605 | 1.5063 | 360 | 0.4996 | -1.5624 | -2.7607 | 0.7734 | 1.1983 | -538.7272 | -418.8674 | 2.1269 | 1.2559 | ### Framework versions - Transformers 4.44.1 - Pytorch 2.1.2+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1