Nick256's picture
Upload 3 files
d6bd1a2 verified
raw
history blame
6.56 kB
# Generated 2024-03-06 from:
# /home/marconilab/tacotron2/hparams/train.yaml
# yamllint disable
############################################################################
# Model: Tacotron2
# Tokens: Raw characters (English text)
# losses: Transducer
# Training: LJSpeech
# Authors: Georges Abous-Rjeili, Artem Ploujnikov, Yingzhi Wang
# ############################################################################
###################################
# Experiment Parameters and setup #
###################################
seed: 1234
__set_seed: !apply:torch.manual_seed [1234]
output_folder: ./results/tacotron2/1234
save_folder: ./results/tacotron2/1234/save
train_log: ./results/tacotron2/1234/train_log.txt
epochs: 500
keep_checkpoint_interval: 50
wandb_id: tacotron2-luganda
wandb_user: sulaiman-kagumire
wandb_project: tts-luganda
init_from_pretrained: true
###################################
# Progress Samples #
###################################
# Progress samples are used to monitor the progress
# of an ongoing training session by outputting samples
# of spectrograms, alignments, etc at regular intervals
# Whether to enable progress samples
progress_samples: false
# The path where the samples will be stored
progress_sample_path: ./results/tacotron2/1234/samples
# The interval, in epochs. For instance, if it is set to 5,
# progress samples will be output every 5 epochs
progress_samples_interval: 1
# The sample size for raw batch samples saved in batch.pth
# (useful mostly for model debugging)
progress_batch_sample_size: 3
#################################
# Data files and pre-processing #
#################################
data_folder: data_folder
# e.g, /localscratch/ljspeech
train_json: ./results/tacotron2/1234/save/train.json
valid_json: ./results/tacotron2/1234/save/valid.json
test_json: ./results/tacotron2/1234/save/test.json
splits: [train, valid, test]
split_ratio: [80, 10, 10]
skip_prep: false
# Use the original preprocessing from nvidia
# The cleaners to be used (applicable to nvidia only)
text_cleaners: [basic_cleaners]
################################
# Audio Parameters #
################################
sample_rate: 22050
hop_length: 256
win_length: 1024
n_mel_channels: 80
n_fft: 1024
mel_fmin: 0.0
mel_fmax: 8000.0
mel_normalized: false
power: 1
norm: slaney
mel_scale: slaney
dynamic_range_compression: true
################################
# Optimization Hyperparameters #
################################
learning_rate: 0.001
weight_decay: 0.000006
batch_size: 256
num_workers: 8
mask_padding: true
guided_attention_sigma: 0.2
guided_attention_weight: 50.0
guided_attention_weight_half_life: 10.
guided_attention_hard_stop: 50
gate_loss_weight: 1.0
train_dataloader_opts:
batch_size: 256
drop_last: false #True #False
num_workers: 8
collate_fn: !new:speechbrain.lobes.models.Tacotron2.TextMelCollate
valid_dataloader_opts:
batch_size: 256
num_workers: 8
collate_fn: !new:speechbrain.lobes.models.Tacotron2.TextMelCollate
test_dataloader_opts:
batch_size: 256
num_workers: 8
collate_fn: !new:speechbrain.lobes.models.Tacotron2.TextMelCollate
################################
# Model Parameters and model #
################################
n_symbols: 148 #fixed depending on symbols in textToSequence
symbols_embedding_dim: 512
# Encoder parameters
encoder_kernel_size: 5
encoder_n_convolutions: 3
encoder_embedding_dim: 512
# Decoder parameters
# The number of frames in the target per encoder step
n_frames_per_step: 1
decoder_rnn_dim: 1024
prenet_dim: 256
max_decoder_steps: 1000
gate_threshold: 0.5
p_attention_dropout: 0.1
p_decoder_dropout: 0.1
decoder_no_early_stopping: false
# Attention parameters
attention_rnn_dim: 1024
attention_dim: 128
# Location Layer parameters
attention_location_n_filters: 32
attention_location_kernel_size: 31
# Mel-post processing network parameters
postnet_embedding_dim: 512
postnet_kernel_size: 5
postnet_n_convolutions: 5
mel_spectogram: !name:speechbrain.lobes.models.Tacotron2.mel_spectogram
sample_rate: 22050
hop_length: 256
win_length: 1024
n_fft: 1024
n_mels: 80
f_min: 0.0
f_max: 8000.0
power: 1
normalized: false
norm: slaney
mel_scale: slaney
compression: true
#model
model: &id002 !new:speechbrain.lobes.models.Tacotron2.Tacotron2
#optimizer
mask_padding: true
n_mel_channels: 80
# symbols
n_symbols: 148
symbols_embedding_dim: 512
# encoder
encoder_kernel_size: 5
encoder_n_convolutions: 3
encoder_embedding_dim: 512
# attention
attention_rnn_dim: 1024
attention_dim: 128
# attention location
attention_location_n_filters: 32
attention_location_kernel_size: 31
# decoder
n_frames_per_step: 1
decoder_rnn_dim: 1024
prenet_dim: 256
max_decoder_steps: 1000
gate_threshold: 0.5
p_attention_dropout: 0.1
p_decoder_dropout: 0.1
# postnet
postnet_embedding_dim: 512
postnet_kernel_size: 5
postnet_n_convolutions: 5
decoder_no_early_stopping: false
guided_attention_scheduler: &id001 !new:speechbrain.nnet.schedulers.StepScheduler
initial_value: 50.0
half_life: 10.
criterion: !new:speechbrain.lobes.models.Tacotron2.Loss
gate_loss_weight: 1.0
guided_attention_weight: 50.0
guided_attention_sigma: 0.2
guided_attention_scheduler: *id001
guided_attention_hard_stop: 50
modules:
model: *id002
opt_class: !name:torch.optim.Adam
lr: 0.001
weight_decay: 0.000006
#epoch object
epoch_counter: &id003 !new:speechbrain.utils.epoch_loop.EpochCounter
limit: 500
# train_logger: !new:speechbrain.utils.train_logger.FileTrainLogger
# save_file: !ref <train_log>
train_logger: !new:speechbrain.utils.train_logger.WandBLogger
initializer: !name:wandb.init
# id: !ref <wandb_id>
name: tacotron2-luganda
entity: sulaiman-kagumire
project: tts-luganda
reinit: true
# yaml_config: hparams/train.yaml
resume: allow
#annealing_function
lr_annealing: &id004 !new:speechbrain.nnet.schedulers.IntervalScheduler
#infer: !name:speechbrain.lobes.models.Tacotron2.infer
intervals:
- steps: 6000
lr: 0.0005
- steps: 8000
lr: 0.0003
- steps: 10000
lr: 0.0001
#checkpointer
checkpointer: !new:speechbrain.utils.checkpoints.Checkpointer
checkpoints_dir: ./results/tacotron2/1234/save
recoverables:
model: *id002
counter: *id003
scheduler: *id004
progress_sample_logger: !new:speechbrain.utils.train_logger.ProgressSampleLogger
output_path: ./results/tacotron2/1234/samples
batch_sample_size: 3
formats:
raw_batch: raw