ppo-LunarLander-v2 / config.json
Nicolas852's picture
First commit a Lunalander model
b9f9a71 verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7cceb02788b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7cceb0278940>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7cceb02789d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7cceb0278a60>", "_build": "<function ActorCriticPolicy._build at 0x7cceb0278af0>", "forward": "<function ActorCriticPolicy.forward at 0x7cceb0278b80>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7cceb0278c10>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7cceb0278ca0>", "_predict": "<function ActorCriticPolicy._predict at 0x7cceb0278d30>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7cceb0278dc0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7cceb0278e50>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7cceb0278ee0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7cceb0226e00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1706145999015954276, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALr5L74bTZW8TkvEu1bMVbrB9wk+l+IuOwAAgD8AAIA/cxD8PXp2Aj6AfSy9hCCWvueL2DoCy2w7AAAAAAAAAABmtVc+W3GjvA65YTsE/qa57ToRvpKPg7oAAIA/AACAPwApRD5FNck+8oEgPdIaz76FyR09SirCPAAAAAAAAAAAGpIpPuAjoD6SzFS+5eucviADNL1j9JC9AAAAAAAAAAATdxK+TwAFvO4+qryFWw+76B1bPSUE8TsAAIA/AACAP82udz2P9Qi80ou2vZJXjjoHS109dlbAuwAAgD8AAIA/zYiIu0Vhtz/ABFG+acXwPp1pLjt9Xng7AAAAAAAAAACaCeE6JGahP7GLhTxH5Ra/FPdqPEBN97wAAAAAAAAAAAYlKL4P8128xaqQugXwtrgiXck9jwK8OQAAgD8AAIA/7RVAPihYlLxNIK48u4IRu/Kz/711xee7AACAPwAAgD/A+Cs+ZykgP37+gb3Oyvu+5VJcPZrQAj0AAAAAAAAAAGaw0z3DkRO6I/c8uRtlprQVQsa6eK9XOAAAgD8AAIA/mqXPuxQu07iNRXUz/kdUMNheHDtaLLqzAACAPwAAgD/gMDK+DjebvP7QCLtNHG252ZQGPvAjZjoAAIA/AACAP+bASr4seZI8ky61Pa/GF76fDiu9M+qOvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV8QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHMpV7Y02tOMAWyUTQABjAF0lEdAoMr/fVI7NnV9lChoBkdAcRC24d6syWgHS+toCEdAoMtKYiPhh3V9lChoBkdAcd8YHxBmgGgHTRQBaAhHQKDLauGKyfN1fZQoaAZHQHChTrNW2gFoB0vdaAhHQKDMMmZ3LV51fZQoaAZHQHIWaSPluFZoB0vOaAhHQKDM9vUjLSx1fZQoaAZHQHEWGqxTsIFoB0vqaAhHQKDNAevpyIZ1fZQoaAZHQHN5eS4e9zxoB0vnaAhHQKDNR8k2P1d1fZQoaAZHQG65S6MBIWhoB0veaAhHQKDPrSsr/bV1fZQoaAZHQG7ifu1F6RhoB0vTaAhHQKDPs8/Uvwp1fZQoaAZHQHCXPbj94u9oB0vqaAhHQKDPxFG5MDh1fZQoaAZHQHFARJ7LMcJoB00OAWgIR0Cg0BlYEGJOdX2UKGgGR0BzU0B3iaRZaAdNJwFoCEdAoNA5ClabF3V9lChoBkdAbhz7P6be/GgHS+toCEdAoNBWSU1Q7HV9lChoBkdAckNvPC2tuGgHS+NoCEdAoNDAXGff43V9lChoBkdActMvdM0xd2gHS81oCEdAoNENl05lv3V9lChoBkdAconUIsyzomgHTVYBaAhHQKDRE57PY4B1fZQoaAZHQHC0AgxJul5oB0vxaAhHQKDSE9VWCEp1fZQoaAZHQHFyDzErGzdoB01CAWgIR0Cg02iA2AG0dX2UKGgGR0BvwYd+5OJtaAdLw2gIR0Cg06GnXNC7dX2UKGgGR0BwYtQ3xWkraAdL22gIR0Cg1Br6DXe4dX2UKGgGR0BxwkSvkiljaAdLzGgIR0Cg1DIbwSamdX2UKGgGR0Bw05XZGrjpaAdL8WgIR0Cg1JxAbADadX2UKGgGR0Bv6tJpWV/uaAdL9mgIR0Cg1TRMFlkIdX2UKGgGR0BvoGNipeeGaAdLz2gIR0Cg1Vl1r6+GdX2UKGgGR0BzGK08eS0TaAdL+mgIR0Cg1WvN/vv0dX2UKGgGR0By6MmY0EX+aAdNBQFoCEdAoNYadDpkgHV9lChoBkdAcOH7+kxh2GgHS+NoCEdAoNbnnZCfH3V9lChoBkdAYi+aIeo1k2gHTegDaAhHQKDXvnZkCmx1fZQoaAZHQHPoiYLLIPtoB0vMaAhHQKDX2xUvPC51fZQoaAZHQHFViI1tO21oB0u1aAhHQKDYGfFrEcd1fZQoaAZHQGOnwMYuTRpoB03oA2gIR0Cg2EaQmu1XdX2UKGgGR0BxPHKGL1mKaAdLzWgIR0Cg2H/7aZhKdX2UKGgGR0Bx+MatLcsUaAdL9WgIR0Cg2Nq4pc5bdX2UKGgGR0BkC/rSmZVoaAdN6ANoCEdAoNjgZKnNxHV9lChoBkdAc69yYG+sYGgHS+9oCEdAoNl7X6InB3V9lChoBkdAbUA495hScmgHTZ0BaAhHQKDZgDIRywR1fZQoaAZHQHKwCeyzHCJoB0vpaAhHQKDZ2HObAk91fZQoaAZHQHEA/9Hc1wZoB0vgaAhHQKDZ2/KQq7R1fZQoaAZHQHHMi22G7BhoB0v1aAhHQKDaIA7Pppx1fZQoaAZHQHJoq7qY7aJoB0v1aAhHQKDarl6JIlN1fZQoaAZHQG7+X668QI5oB0vVaAhHQKDawo7V8Tl1fZQoaAZHQHAK6dlNDdBoB0vXaAhHQKDbfx5LRKJ1fZQoaAZHQHHKWxdIGyJoB0vwaAhHQKDb2o/iYLN1fZQoaAZHQHAqgb2lEZ1oB0vWaAhHQKDcD1Tzd1x1fZQoaAZHQHCPKm4y44JoB0vnaAhHQKDcLTtsvZh1fZQoaAZHQG9hOpjtoi9oB0vRaAhHQKDcWy0rsjV1fZQoaAZHQHMN8iGFi8ZoB0v7aAhHQKDcYNAkcCJ1fZQoaAZHQHOn5IlMRHxoB0vsaAhHQKDc0i9qUNd1fZQoaAZHQGOlvo3aSLZoB03oA2gIR0Cg3Ww0GeMAdX2UKGgGR0BxA4BGQSzxaAdL8WgIR0Cg3ZPOQhfTdX2UKGgGR0BxYY2wV0tAaAdL9GgIR0Cg3ZywGGEgdX2UKGgGR0BhHogs9SuRaAdN6ANoCEdAoN2cELYwqXV9lChoBkdAcJ6zreIl+mgHS+poCEdAoN3Id+5OJ3V9lChoBkdAcRi27Wd3CGgHS/NoCEdAoN3i1XvH93V9lChoBkdAc8YzcynDSGgHS+BoCEdAoN5d3OfNA3V9lChoBkdAbCu9ytFKCmgHS9xoCEdAoN5i77Kq43V9lChoBkdAcs8wEyLyc2gHS9doCEdAoN73BxgiNnV9lChoBkdAcAPhllK9PGgHS9BoCEdAoN9WIwdsBXV9lChoBkdAckOzpX6qKmgHS91oCEdAoN9gMlTm4nV9lChoBkdAcZ802tMfzWgHS9poCEdAoN/ENDtw73V9lChoBkdAco1TCcf/3mgHS+doCEdAoN/2epXIVHV9lChoBkdAcuxyqdYnv2gHS/poCEdAoOAaYLLIP3V9lChoBkdAb3WEcsDnvGgHS89oCEdAoOCGoP07KnV9lChoBkdAccRa3qiXY2gHS/hoCEdAoOC6tknTiXV9lChoBkdAcFNK4x1xKmgHS9ZoCEdAoOD9Jvo/zXV9lChoBkdAb8f+TeO4omgHS9poCEdAoOEIJJGvwHV9lChoBkdAb4BVMmF8HGgHS+FoCEdAoOE5ZIQOF3V9lChoBkdAbicnivPkaWgHS9VoCEdAoOE/99+gDnV9lChoBkdAcQ36qbSZ0GgHS+doCEdAoOHAPuogm3V9lChoBkdAcVlQP7N0NmgHS/loCEdAoOLvoicG1XV9lChoBkdAb7OB/ZuhsmgHS9loCEdAoOMVxbSql3V9lChoBkdAb1c0GeMAFWgHS81oCEdAoONfSfDk2nV9lChoBkdAcXPI/JNj9WgHS8NoCEdAoOO5bpu/DnV9lChoBkdAbP10cwQDm2gHS81oCEdAoOR125hBq3V9lChoBkdAcPMR9w3o92gHS+FoCEdAoOS/DgqEvnV9lChoBkdAcvOIToMa0mgHS8doCEdAoOVRs2vSt3V9lChoBkdAcOW1yeZof2gHS91oCEdAoOVbWK/EfnV9lChoBkdAchWwt8NQTGgHS+1oCEdAoOW+evpyInV9lChoBkdAcqrTufEn9mgHS+toCEdAoOXo/LTx5XV9lChoBkdAb3kzY287IWgHS+doCEdAoOYLshPj43V9lChoBkdAcCXl+mWMTGgHS9BoCEdAoOYZbr1M/XV9lChoBkdAcmiszl90BGgHTQcBaAhHQKDmh7rLQol1fZQoaAZHQG/g/oaDPGBoB0veaAhHQKDnXvUjLSx1fZQoaAZHQHA/MbBGhEloB0veaAhHQKDnnZjhDPZ1fZQoaAZHQHN+dkSVW0ZoB0v3aAhHQKDnsqrBCUp1fZQoaAZHQG1e06gdwNtoB0vuaAhHQKDoIFzMibF1fZQoaAZHQHBTZV0cOsloB0vPaAhHQKDoS+qzZ6F1fZQoaAZHQHBC4D5j6N5oB0veaAhHQKDpJ/MGHHp1fZQoaAZHQHEjpWV/tppoB0vIaAhHQKDpiCK77Kt1fZQoaAZHQG2IV/tpmEpoB0vTaAhHQKDpra5f+jx1fZQoaAZHQHCnVE7W/ahoB0vgaAhHQKDpxIOpbUx1fZQoaAZHQHGrKoZQ53loB0v5aAhHQKDqCREnb7F1fZQoaAZHQHIN0Gmk30hoB01NAWgIR0Cg6lg8KXv6dX2UKGgGR0BtLOvwEyLyaAdNCQFoCEdAoOstKIznBHV9lChoBkdAcYQaRZEDyWgHS95oCEdAoOtImmce83V9lChoBkdAcvHkmQbMo2gHS9ZoCEdAoOtk8ox59nV9lChoBkdAccxWq94/vGgHS85oCEdAoOvMg+yJK3V9lChoBkdAYzXOfukUK2gHTegDaAhHQKDr+gK4QSV1fZQoaAZHQHA2eC04R29oB0vnaAhHQKDtSWLP2PF1fZQoaAZHQG8DY6wMYuVoB0vdaAhHQKDtvocJdB11ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}