{ "name": "root", "gauges": { "Pyramids.Policy.Entropy.mean": { "value": 0.17482811212539673, "min": 0.17330242693424225, "max": 1.4507393836975098, "count": 100 }, "Pyramids.Policy.Entropy.sum": { "value": 5242.0458984375, "min": 5151.9345703125, "max": 44009.62890625, "count": 100 }, "Pyramids.Step.mean": { "value": 2999924.0, "min": 29912.0, "max": 2999924.0, "count": 100 }, "Pyramids.Step.sum": { "value": 2999924.0, "min": 29912.0, "max": 2999924.0, "count": 100 }, "Pyramids.Policy.ExtrinsicValueEstimate.mean": { "value": 0.8132672905921936, "min": -0.21639706194400787, "max": 0.8132672905921936, "count": 100 }, "Pyramids.Policy.ExtrinsicValueEstimate.sum": { "value": 242.35365295410156, "min": -51.286102294921875, "max": 242.35365295410156, "count": 100 }, "Pyramids.Policy.RndValueEstimate.mean": { "value": 0.010181977413594723, "min": -0.025289621204137802, "max": 0.303748220205307, "count": 100 }, "Pyramids.Policy.RndValueEstimate.sum": { "value": 3.034229278564453, "min": -7.00522518157959, "max": 73.20332336425781, "count": 100 }, "Pyramids.Losses.PolicyLoss.mean": { "value": 0.06837959499874463, "min": 0.06452693229667379, "max": 0.07303278170533242, "count": 100 }, "Pyramids.Losses.PolicyLoss.sum": { "value": 1.0256939249811694, "min": 0.4836235476113139, "max": 1.093776802693302, "count": 100 }, "Pyramids.Losses.ValueLoss.mean": { "value": 0.0130653168740941, "min": 0.0005115327173492487, "max": 0.015645201730637107, "count": 100 }, "Pyramids.Losses.ValueLoss.sum": { "value": 0.1959797531114115, "min": 0.005115327173492487, "max": 0.22900681754040042, "count": 100 }, "Pyramids.Policy.LearningRate.mean": { "value": 1.5169661610444478e-06, "min": 1.5169661610444478e-06, "max": 0.00029841154338662855, "count": 100 }, "Pyramids.Policy.LearningRate.sum": { "value": 2.2754492415666716e-05, "min": 2.2754492415666716e-05, "max": 0.003892477302507633, "count": 100 }, "Pyramids.Policy.Epsilon.mean": { "value": 0.10050562222222222, "min": 0.10050562222222222, "max": 0.1994705142857143, "count": 100 }, "Pyramids.Policy.Epsilon.sum": { "value": 1.5075843333333332, "min": 1.3962936000000001, "max": 2.797492366666667, "count": 100 }, "Pyramids.Policy.Beta.mean": { "value": 6.05116600000001e-05, "min": 6.05116600000001e-05, "max": 0.009947104377142857, "count": 100 }, "Pyramids.Policy.Beta.sum": { "value": 0.0009076749000000014, "min": 0.0009076749000000014, "max": 0.12976948743000002, "count": 100 }, "Pyramids.Losses.RNDLoss.mean": { "value": 0.004741171840578318, "min": 0.004624335560947657, "max": 0.44086360931396484, "count": 100 }, "Pyramids.Losses.RNDLoss.sum": { "value": 0.0711175799369812, "min": 0.06474069505929947, "max": 3.086045265197754, "count": 100 }, "Pyramids.Environment.EpisodeLength.mean": { "value": 231.9291338582677, "min": 231.9291338582677, "max": 998.78125, "count": 100 }, "Pyramids.Environment.EpisodeLength.sum": { "value": 29455.0, "min": 16711.0, "max": 33014.0, "count": 100 }, "Pyramids.Environment.CumulativeReward.mean": { "value": 1.7365653442116233, "min": -0.9372500504832715, "max": 1.7610959882736206, "count": 100 }, "Pyramids.Environment.CumulativeReward.sum": { "value": 220.54379871487617, "min": -29.992001615464687, "max": 221.33199779689312, "count": 100 }, "Pyramids.Policy.ExtrinsicReward.mean": { "value": 1.7365653442116233, "min": -0.9372500504832715, "max": 1.7610959882736206, "count": 100 }, "Pyramids.Policy.ExtrinsicReward.sum": { "value": 220.54379871487617, "min": -29.992001615464687, "max": 221.33199779689312, "count": 100 }, "Pyramids.Policy.RndReward.mean": { "value": 0.011310607960136464, "min": 0.011310607960136464, "max": 8.401019156855696, "count": 100 }, "Pyramids.Policy.RndReward.sum": { "value": 1.436447210937331, "min": 1.4348511838979903, "max": 142.81732566654682, "count": 100 }, "Pyramids.IsTraining.mean": { "value": 1.0, "min": 1.0, "max": 1.0, "count": 100 }, "Pyramids.IsTraining.sum": { "value": 1.0, "min": 1.0, "max": 1.0, "count": 100 } }, "metadata": { "timer_format_version": "0.1.0", "start_time_seconds": "1706589002", "python_version": "3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0]", "command_line_arguments": "/usr/local/bin/mlagents-learn ./config/ppo/PyramidsRND.yaml --env=./training-envs-executables/linux/Pyramids/Pyramids --run-id=PyramidsTraining --no-graphics --force", "mlagents_version": "1.1.0.dev0", "mlagents_envs_version": "1.1.0.dev0", "communication_protocol_version": "1.5.0", "pytorch_version": "2.1.2+cu121", "numpy_version": "1.23.5", "end_time_seconds": "1706595885" }, "total": 6883.719659685, "count": 1, "self": 0.5645091610003874, "children": { "run_training.setup": { "total": 0.07568099499997061, "count": 1, "self": 0.07568099499997061 }, "TrainerController.start_learning": { "total": 6883.079469529, "count": 1, "self": 4.229469305236307, "children": { "TrainerController._reset_env": { "total": 3.3904160289999936, "count": 1, "self": 3.3904160289999936 }, "TrainerController.advance": { "total": 6875.370577205763, "count": 193918, "self": 4.462017299530999, "children": { "env_step": { "total": 4958.729628320185, "count": 193918, "self": 4564.427026540247, "children": { "SubprocessEnvManager._take_step": { "total": 391.6837921569845, "count": 193918, "self": 14.520287364885917, "children": { "TorchPolicy.evaluate": { "total": 377.1635047920986, "count": 187549, "self": 377.1635047920986 } } }, "workers": { "total": 2.6188096229529947, "count": 193918, "self": 0.0, "children": { "worker_root": { "total": 6867.824345605776, "count": 193918, "is_parallel": true, "self": 2657.9586808818176, "children": { "run_training.setup": { "total": 0.0, "count": 0, "is_parallel": true, "self": 0.0, "children": { "steps_from_proto": { "total": 0.004735423000056471, "count": 1, "is_parallel": true, "self": 0.0035325910001802185, "children": { "_process_rank_one_or_two_observation": { "total": 0.0012028319998762527, "count": 8, "is_parallel": true, "self": 0.0012028319998762527 } } }, "UnityEnvironment.step": { "total": 0.08721992300002057, "count": 1, "is_parallel": true, "self": 0.0006619289999889588, "children": { "UnityEnvironment._generate_step_input": { "total": 0.0004915220000611953, "count": 1, "is_parallel": true, "self": 0.0004915220000611953 }, "communicator.exchange": { "total": 0.08447703399997408, "count": 1, "is_parallel": true, "self": 0.08447703399997408 }, "steps_from_proto": { "total": 0.0015894379999963348, "count": 1, "is_parallel": true, "self": 0.00033306799980437063, "children": { "_process_rank_one_or_two_observation": { "total": 0.0012563700001919642, "count": 8, "is_parallel": true, "self": 0.0012563700001919642 } } } } } } }, "UnityEnvironment.step": { "total": 4209.865664723959, "count": 193917, "is_parallel": true, "self": 108.53745355305182, "children": { "UnityEnvironment._generate_step_input": { "total": 74.26488092700095, "count": 193917, "is_parallel": true, "self": 74.26488092700095 }, "communicator.exchange": { "total": 3726.0994106950116, "count": 193917, "is_parallel": true, "self": 3726.0994106950116 }, "steps_from_proto": { "total": 300.96391954889475, "count": 193917, "is_parallel": true, "self": 60.51398081750642, "children": { "_process_rank_one_or_two_observation": { "total": 240.44993873138833, "count": 1551336, "is_parallel": true, "self": 240.44993873138833 } } } } } } } } } } }, "trainer_advance": { "total": 1912.178931586047, "count": 193918, "self": 8.843336463985452, "children": { "process_trajectory": { "total": 389.53699774305335, "count": 193918, "self": 388.9952704260537, "children": { "RLTrainer._checkpoint": { "total": 0.5417273169996406, "count": 6, "self": 0.5417273169996406 } } }, "_update_policy": { "total": 1513.7985973790082, "count": 1390, "self": 892.9627504329926, "children": { "TorchPPOOptimizer.update": { "total": 620.8358469460156, "count": 68442, "self": 620.8358469460156 } } } } } } }, "trainer_threads": { "total": 9.599998520570807e-07, "count": 1, "self": 9.599998520570807e-07 }, "TrainerController._save_models": { "total": 0.08900602900030208, "count": 1, "self": 0.0017166970001198933, "children": { "RLTrainer._checkpoint": { "total": 0.08728933200018218, "count": 1, "self": 0.08728933200018218 } } } } } } }