Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1503.31 +/- 97.70
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6c9d139cda3a6d4bf0063de0aa23b39b7542f975fa424af7a1dbf8509252f503
|
3 |
+
size 129260
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f1cbed72280>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1cbed72310>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1cbed723a0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1cbed72430>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f1cbed724c0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f1cbed72550>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f1cbed725e0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1cbed72670>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f1cbed72700>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1cbed72790>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1cbed72820>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1cbed728b0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f1cbed6d900>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1675363177890374106,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAADKAqz/TeNS/nwaRPmQ02D/bGWk6TkKvP2xalb8epATAD2Djv+J6T7+1xJY/GI+FwITWbL9/D/E+aR+zPg0teb5F3Tu+oik1v+xqgj7wAR/AcxmfP0Na2b4t8hY/VQoGQBbkaL+JiBk/wCWNPvQTtr/y6lU+rFI3vz4KJj/uqrE/xTtfvjC2p78jDcU+OTjMvGWlij3wkRG/GE4rPwD7DMDAnKi/uMmNPBXi2r5n5yW/1WeEvivWnD6CLpc+V4WMP7kMDb8dBSy/5c8EPVu74j53s4w/Cm3Vv8AljT6G9zM/5eG8P3++8b/ZPa491xbpP9BMoj8FquM+xk2TP2Y5GL/mBJS/ycO2P1TuCr+Qwo/A9ostPyr51T/mqJq/6mc1P3LeBr+yGSNAcdhjPsrx6r/AHy6/Aj7zPqzMRD/7kH4+FuRov4mIGT/AJY0+hvczP1hgNr/U4Oi+5OIiPzKlRD6ogza/7Oc3PxPl0zrk9Q++J7VpP2+TAb9KXwm/DEmFvjoEn7//QyM/QWThPT5whz2tzWU+rUtHPgEqDD9qzdo8Rp3YP9Ap/z10XjA+3bekPhbkaL+JiBk/wCWNPob3Mz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADNj8q1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAP605vQAAAABtJwDAAAAAALSCCj0AAAAA0LXjPwAAAAArCoK9AAAAAFEu4D8AAAAA79uePQAAAADBhdm/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA7WohtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgNARAT4AAAAA4bHfvwAAAAArx7A9AAAAAMas6j8AAAAAm9RjvQAAAABq2d8/AAAAAPhebzwAAAAAQoPhvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOgZsLUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBjmc49AAAAAIKq/78AAAAAaZCHvQAAAABA594/AAAAAFz3oz0AAAAAfUDZPwAAAADFHee8AAAAANzp+r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADxsXk2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAOizNOQAAAAAdc+K/AAAAAHLQBj4AAAAADs/iPwAAAAAvD2Q9AAAAAMOj4D8AAAAAee8BPQAAAAAQ/uu/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJerkmfGuLeMAWyUTegDjAF0lEdAqL0/2M85j3V9lChoBkdAl/blp48lomgHTegDaAhHQKjDTgXMyJt1fZQoaAZHQJYzmY5T6zpoB03oA2gIR0Cow6QZwXImdX2UKGgGR0CW5saGYa5xaAdN6ANoCEdAqMUu+0w8GXV9lChoBkdAmAKH/1g6VGgHTegDaAhHQKjJAfGuLaV1fZQoaAZHQJeqJxm03OxoB03oA2gIR0Cozus3IdU9dX2UKGgGR0CUyaTiKiwjaAdN6ANoCEdAqM8+nEVFhHV9lChoBkdAmJvIyoGY8mgHTegDaAhHQKjQz4hUzbh1fZQoaAZHQJjUFjc2zfJoB03oA2gIR0Co1KQyqMm4dX2UKGgGR0CXpXSr5qM4aAdN6ANoCEdAqNqnnwG4Z3V9lChoBkdAmKVtsabWmWgHTegDaAhHQKja/DlYEGJ1fZQoaAZHQJmttd3Sro5oB03oA2gIR0Co3JcWbgCPdX2UKGgGR0CZhgegctGvaAdN6ANoCEdAqOBj3h4t6HV9lChoBkdAmFepPhybQWgHTegDaAhHQKjmTFOO8011fZQoaAZHQJg0AnH/951oB03oA2gIR0Co5p8L0BfbdX2UKGgGR0CZWT8Yht+DaAdN6ANoCEdAqOgyiRGMGXV9lChoBkdAl4fw5vLowGgHTegDaAhHQKjsIO7xusN1fZQoaAZHQJpHUOiFj/doB03oA2gIR0Co8j5qmCRPdX2UKGgGR0CZVXP+n62waAdN6ANoCEdAqPKRTVDrq3V9lChoBkdAmAxWQjlgdGgHTegDaAhHQKj0KrXDm8x1fZQoaAZHQJhDHB+F10VoB03oA2gIR0Co+Amqgh8qdX2UKGgGR0CX0d9B8hLXaAdN6ANoCEdAqP47lkpZwHV9lChoBkdAlv68vAXVLGgHTegDaAhHQKj+lZ39rGl1fZQoaAZHQJbhEiml67doB03oA2gIR0CpADfNJOFhdX2UKGgGR0CVRaYGdI5HaAdN6ANoCEdAqQQKkM1CPnV9lChoBkdAmI4gF5fMOmgHTegDaAhHQKkKFGhEjPh1fZQoaAZHQJeVnJFLFn9oB03oA2gIR0CpCmZvDP4VdX2UKGgGR0CXOiTnq3VkaAdN6ANoCEdAqQvzUmUnonV9lChoBkdAmAuOiWVu8GgHTegDaAhHQKkPwxqO9391fZQoaAZHQJeZORMewLVoB03oA2gIR0CpFcWtlqagdX2UKGgGR0CX4afwZwXJaAdN6ANoCEdAqRYW6Ae7tnV9lChoBkdAl+FFC9h7V2gHTegDaAhHQKkXqTOgQH11fZQoaAZHQJiWVzZHuqpoB03oA2gIR0CpG2+o99tudX2UKGgGR0CXO6LeQ+2WaAdN6ANoCEdAqSFXPqs2enV9lChoBkdAlsdzMeOn22gHTegDaAhHQKkhqmYSg5B1fZQoaAZHQJUxRdSl3yJoB03oA2gIR0CpIzc7ZFoddX2UKGgGR0CXb75BTn7paAdN6ANoCEdAqScKJCSid3V9lChoBkdAlkOb433pOmgHTegDaAhHQKktLCZWq951fZQoaAZHQJPCZDBuXNVoB03oA2gIR0CpLYVHe7+UdX2UKGgGR0CUJC0nPVuraAdN6ANoCEdAqS88qz7di3V9lChoBkdAl8UtW2gFo2gHTegDaAhHQKkzVzDGcWl1fZQoaAZHQJFoLmfXf65oB03oA2gIR0CpOZ05lvqDdX2UKGgGR0CT8jCaqjrSaAdN6ANoCEdAqTn0DQqqfnV9lChoBkdAlcaR7NSqEWgHTegDaAhHQKk7nxp+MIh1fZQoaAZHQJVbfQUpNK1oB03oA2gIR0CpP3gHmig1dX2UKGgGR0CUm2MgU1yeaAdN6ANoCEdAqUVcEzO5a3V9lChoBkdAlxHvoicG1WgHTegDaAhHQKlFtvphWo51fZQoaAZHQJeV9hiLEUFoB03oA2gIR0CpR00WM0gsdX2UKGgGR0CW7UMajvd/aAdN6ANoCEdAqUt45WBBiXV9lChoBkdAlS45e7cwg2gHTegDaAhHQKlUnfLLZBd1fZQoaAZHQJaHLL1VYIVoB03oA2gIR0CpVPyM98qndX2UKGgGR0CWzsMI/qxDaAdN6ANoCEdAqVaR2yLQ5XV9lChoBkdAlzbRjOLR8mgHTegDaAhHQKlaXR9gF5h1fZQoaAZHQJlP7SRbKRxoB03oA2gIR0CpYFq4YrJ9dX2UKGgGR0CYbtbGWD6FaAdN6ANoCEdAqWCwAXEZSHV9lChoBkdAmDnGOyVv/GgHTegDaAhHQKliVbNbC791fZQoaAZHQJSsVnFo+OhoB03oA2gIR0CpZkUF0PpZdX2UKGgGR0CO/JPl+3H8aAdN6ANoCEdAqWxpwhnrZHV9lChoBkdAlsEjlkpZwGgHTegDaAhHQKlsvwBHTZx1fZQoaAZHQJe/zmr8zhxoB03oA2gIR0CpbllgMMJAdX2UKGgGR0CXSmKMefZmaAdN6ANoCEdAqXJEmF8G93V9lChoBkdAlXCh7AtWdWgHTegDaAhHQKl4jl3hXKd1fZQoaAZHQJZI+DZlFttoB03oA2gIR0CpeOFrM1TBdX2UKGgGR0CWmzMSbpeNaAdN6ANoCEdAqXqFEgGKRHV9lChoBkdAl06Zy2hIv2gHTegDaAhHQKl+WcABDG91fZQoaAZHQJd9Fjy4FzNoB03oA2gIR0CphF/XwsoVdX2UKGgGR0CZdV8XvYvnaAdN6ANoCEdAqYS7aVUuMHV9lChoBkdAlfS+ruIAO2gHTegDaAhHQKmGT1pTMq11fZQoaAZHQJXVLFhoduJoB03oA2gIR0Cpikam4y44dX2UKGgGR0CXt6r9VFQVaAdN6ANoCEdAqZA1zS1E3XV9lChoBkdAl2ShgRbr1WgHTegDaAhHQKmQiZUDMeR1fZQoaAZHQJk+aFzuF6BoB03oA2gIR0CpkigpKBd2dX2UKGgGR0CXneGHHmzTaAdN6ANoCEdAqZXtB2OhkHV9lChoBkdAl1jKLn9vTGgHTegDaAhHQKmb2mQ8wHt1fZQoaAZHQJk/eXfIjnpoB03oA2gIR0CpnC8Co0hvdX2UKGgGR0CZoH53kgfVaAdN6ANoCEdAqZ2/vSc9XHV9lChoBkdAlgztHYpUgmgHTegDaAhHQKmhkFajesR1fZQoaAZHQIFUX7Lt/nZoB03oA2gIR0Cpp6Aeq7yydX2UKGgGR0CVanus90RwaAdN6ANoCEdAqaf8DQqqfnV9lChoBkdAmGnThUBGQWgHTegDaAhHQKmpgsCDEm91fZQoaAZHQJLXmsIVuaZoB03oA2gIR0CprUPRZ2ZBdX2UKGgGR0CXGzGgBcRlaAdN6ANoCEdAqbMeitaIN3V9lChoBkdAmIrMoc7yQWgHTegDaAhHQKmzet+1Bt11fZQoaAZHQJhVOKBNEgJoB03oA2gIR0CptRO09hZydX2UKGgGR0CZQMyhBZ6laAdN6ANoCEdAqbjsihWYGHV9lChoBkdAmHYxYigTRWgHTegDaAhHQKm+yoAn2Ix1fZQoaAZHQJQuHe40/GFoB03oA2gIR0Cpvx2dd3SsdX2UKGgGR0CW71JAt4A0aAdN6ANoCEdAqcC+hZha1XV9lChoBkdAl7FE8aGYbGgHTegDaAhHQKnElxhDw6R1fZQoaAZHQJaDR44ZMtdoB03oA2gIR0CpyoV+y7f6dX2UKGgGR0CZGrX6ZYxMaAdN6ANoCEdAqcrZ2U0N0HV9lChoBkdAdlhMCLdepmgHTegDaAhHQKnMeRlHz6J1fZQoaAZHQJYQMk/r0J5oB03oA2gIR0Cp0Dr4N7SidX2UKGgGR0CYdcTAWSEEaAdN6ANoCEdAqdYxMajveHV9lChoBkdAl3omu9vjwWgHTegDaAhHQKnWiV2Rq491fZQoaAZHQJB5E5Ke05VoB03oA2gIR0Cp2B0xEfDDdX2UKGgGR0CPHKWGATZhaAdN6ANoCEdAqdv3BP9DQnV9lChoBkdAmV1beZXuE2gHTegDaAhHQKniEDlo11p1fZQoaAZHQJiLKYu01IloB03oA2gIR0Cp4me0gKWtdX2UKGgGR0CZlhlZowmFaAdN6ANoCEdAqeP+dmQKbHVlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:86a4b4b2fa5871a3eb3b13c6fb489175b7e81512567b4e04314d08cd4748fd5a
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8c8a2858ea736881e03f84c22a9d482b042889a6200d0d90363c1c211a2dea18
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f1cbed72280>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1cbed72310>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1cbed723a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1cbed72430>", "_build": "<function ActorCriticPolicy._build at 0x7f1cbed724c0>", "forward": "<function ActorCriticPolicy.forward at 0x7f1cbed72550>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f1cbed725e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1cbed72670>", "_predict": "<function ActorCriticPolicy._predict at 0x7f1cbed72700>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1cbed72790>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1cbed72820>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1cbed728b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f1cbed6d900>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675363177890374106, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAADKAqz/TeNS/nwaRPmQ02D/bGWk6TkKvP2xalb8epATAD2Djv+J6T7+1xJY/GI+FwITWbL9/D/E+aR+zPg0teb5F3Tu+oik1v+xqgj7wAR/AcxmfP0Na2b4t8hY/VQoGQBbkaL+JiBk/wCWNPvQTtr/y6lU+rFI3vz4KJj/uqrE/xTtfvjC2p78jDcU+OTjMvGWlij3wkRG/GE4rPwD7DMDAnKi/uMmNPBXi2r5n5yW/1WeEvivWnD6CLpc+V4WMP7kMDb8dBSy/5c8EPVu74j53s4w/Cm3Vv8AljT6G9zM/5eG8P3++8b/ZPa491xbpP9BMoj8FquM+xk2TP2Y5GL/mBJS/ycO2P1TuCr+Qwo/A9ostPyr51T/mqJq/6mc1P3LeBr+yGSNAcdhjPsrx6r/AHy6/Aj7zPqzMRD/7kH4+FuRov4mIGT/AJY0+hvczP1hgNr/U4Oi+5OIiPzKlRD6ogza/7Oc3PxPl0zrk9Q++J7VpP2+TAb9KXwm/DEmFvjoEn7//QyM/QWThPT5whz2tzWU+rUtHPgEqDD9qzdo8Rp3YP9Ap/z10XjA+3bekPhbkaL+JiBk/wCWNPob3Mz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADNj8q1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAP605vQAAAABtJwDAAAAAALSCCj0AAAAA0LXjPwAAAAArCoK9AAAAAFEu4D8AAAAA79uePQAAAADBhdm/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA7WohtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgNARAT4AAAAA4bHfvwAAAAArx7A9AAAAAMas6j8AAAAAm9RjvQAAAABq2d8/AAAAAPhebzwAAAAAQoPhvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOgZsLUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBjmc49AAAAAIKq/78AAAAAaZCHvQAAAABA594/AAAAAFz3oz0AAAAAfUDZPwAAAADFHee8AAAAANzp+r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADxsXk2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAOizNOQAAAAAdc+K/AAAAAHLQBj4AAAAADs/iPwAAAAAvD2Q9AAAAAMOj4D8AAAAAee8BPQAAAAAQ/uu/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJerkmfGuLeMAWyUTegDjAF0lEdAqL0/2M85j3V9lChoBkdAl/blp48lomgHTegDaAhHQKjDTgXMyJt1fZQoaAZHQJYzmY5T6zpoB03oA2gIR0Cow6QZwXImdX2UKGgGR0CW5saGYa5xaAdN6ANoCEdAqMUu+0w8GXV9lChoBkdAmAKH/1g6VGgHTegDaAhHQKjJAfGuLaV1fZQoaAZHQJeqJxm03OxoB03oA2gIR0Cozus3IdU9dX2UKGgGR0CUyaTiKiwjaAdN6ANoCEdAqM8+nEVFhHV9lChoBkdAmJvIyoGY8mgHTegDaAhHQKjQz4hUzbh1fZQoaAZHQJjUFjc2zfJoB03oA2gIR0Co1KQyqMm4dX2UKGgGR0CXpXSr5qM4aAdN6ANoCEdAqNqnnwG4Z3V9lChoBkdAmKVtsabWmWgHTegDaAhHQKja/DlYEGJ1fZQoaAZHQJmttd3Sro5oB03oA2gIR0Co3JcWbgCPdX2UKGgGR0CZhgegctGvaAdN6ANoCEdAqOBj3h4t6HV9lChoBkdAmFepPhybQWgHTegDaAhHQKjmTFOO8011fZQoaAZHQJg0AnH/951oB03oA2gIR0Co5p8L0BfbdX2UKGgGR0CZWT8Yht+DaAdN6ANoCEdAqOgyiRGMGXV9lChoBkdAl4fw5vLowGgHTegDaAhHQKjsIO7xusN1fZQoaAZHQJpHUOiFj/doB03oA2gIR0Co8j5qmCRPdX2UKGgGR0CZVXP+n62waAdN6ANoCEdAqPKRTVDrq3V9lChoBkdAmAxWQjlgdGgHTegDaAhHQKj0KrXDm8x1fZQoaAZHQJhDHB+F10VoB03oA2gIR0Co+Amqgh8qdX2UKGgGR0CX0d9B8hLXaAdN6ANoCEdAqP47lkpZwHV9lChoBkdAlv68vAXVLGgHTegDaAhHQKj+lZ39rGl1fZQoaAZHQJbhEiml67doB03oA2gIR0CpADfNJOFhdX2UKGgGR0CVRaYGdI5HaAdN6ANoCEdAqQQKkM1CPnV9lChoBkdAmI4gF5fMOmgHTegDaAhHQKkKFGhEjPh1fZQoaAZHQJeVnJFLFn9oB03oA2gIR0CpCmZvDP4VdX2UKGgGR0CXOiTnq3VkaAdN6ANoCEdAqQvzUmUnonV9lChoBkdAmAuOiWVu8GgHTegDaAhHQKkPwxqO9391fZQoaAZHQJeZORMewLVoB03oA2gIR0CpFcWtlqagdX2UKGgGR0CX4afwZwXJaAdN6ANoCEdAqRYW6Ae7tnV9lChoBkdAl+FFC9h7V2gHTegDaAhHQKkXqTOgQH11fZQoaAZHQJiWVzZHuqpoB03oA2gIR0CpG2+o99tudX2UKGgGR0CXO6LeQ+2WaAdN6ANoCEdAqSFXPqs2enV9lChoBkdAlsdzMeOn22gHTegDaAhHQKkhqmYSg5B1fZQoaAZHQJUxRdSl3yJoB03oA2gIR0CpIzc7ZFoddX2UKGgGR0CXb75BTn7paAdN6ANoCEdAqScKJCSid3V9lChoBkdAlkOb433pOmgHTegDaAhHQKktLCZWq951fZQoaAZHQJPCZDBuXNVoB03oA2gIR0CpLYVHe7+UdX2UKGgGR0CUJC0nPVuraAdN6ANoCEdAqS88qz7di3V9lChoBkdAl8UtW2gFo2gHTegDaAhHQKkzVzDGcWl1fZQoaAZHQJFoLmfXf65oB03oA2gIR0CpOZ05lvqDdX2UKGgGR0CT8jCaqjrSaAdN6ANoCEdAqTn0DQqqfnV9lChoBkdAlcaR7NSqEWgHTegDaAhHQKk7nxp+MIh1fZQoaAZHQJVbfQUpNK1oB03oA2gIR0CpP3gHmig1dX2UKGgGR0CUm2MgU1yeaAdN6ANoCEdAqUVcEzO5a3V9lChoBkdAlxHvoicG1WgHTegDaAhHQKlFtvphWo51fZQoaAZHQJeV9hiLEUFoB03oA2gIR0CpR00WM0gsdX2UKGgGR0CW7UMajvd/aAdN6ANoCEdAqUt45WBBiXV9lChoBkdAlS45e7cwg2gHTegDaAhHQKlUnfLLZBd1fZQoaAZHQJaHLL1VYIVoB03oA2gIR0CpVPyM98qndX2UKGgGR0CWzsMI/qxDaAdN6ANoCEdAqVaR2yLQ5XV9lChoBkdAlzbRjOLR8mgHTegDaAhHQKlaXR9gF5h1fZQoaAZHQJlP7SRbKRxoB03oA2gIR0CpYFq4YrJ9dX2UKGgGR0CYbtbGWD6FaAdN6ANoCEdAqWCwAXEZSHV9lChoBkdAmDnGOyVv/GgHTegDaAhHQKliVbNbC791fZQoaAZHQJSsVnFo+OhoB03oA2gIR0CpZkUF0PpZdX2UKGgGR0CO/JPl+3H8aAdN6ANoCEdAqWxpwhnrZHV9lChoBkdAlsEjlkpZwGgHTegDaAhHQKlsvwBHTZx1fZQoaAZHQJe/zmr8zhxoB03oA2gIR0CpbllgMMJAdX2UKGgGR0CXSmKMefZmaAdN6ANoCEdAqXJEmF8G93V9lChoBkdAlXCh7AtWdWgHTegDaAhHQKl4jl3hXKd1fZQoaAZHQJZI+DZlFttoB03oA2gIR0CpeOFrM1TBdX2UKGgGR0CWmzMSbpeNaAdN6ANoCEdAqXqFEgGKRHV9lChoBkdAl06Zy2hIv2gHTegDaAhHQKl+WcABDG91fZQoaAZHQJd9Fjy4FzNoB03oA2gIR0CphF/XwsoVdX2UKGgGR0CZdV8XvYvnaAdN6ANoCEdAqYS7aVUuMHV9lChoBkdAlfS+ruIAO2gHTegDaAhHQKmGT1pTMq11fZQoaAZHQJXVLFhoduJoB03oA2gIR0Cpikam4y44dX2UKGgGR0CXt6r9VFQVaAdN6ANoCEdAqZA1zS1E3XV9lChoBkdAl2ShgRbr1WgHTegDaAhHQKmQiZUDMeR1fZQoaAZHQJk+aFzuF6BoB03oA2gIR0CpkigpKBd2dX2UKGgGR0CXneGHHmzTaAdN6ANoCEdAqZXtB2OhkHV9lChoBkdAl1jKLn9vTGgHTegDaAhHQKmb2mQ8wHt1fZQoaAZHQJk/eXfIjnpoB03oA2gIR0CpnC8Co0hvdX2UKGgGR0CZoH53kgfVaAdN6ANoCEdAqZ2/vSc9XHV9lChoBkdAlgztHYpUgmgHTegDaAhHQKmhkFajesR1fZQoaAZHQIFUX7Lt/nZoB03oA2gIR0Cpp6Aeq7yydX2UKGgGR0CVanus90RwaAdN6ANoCEdAqaf8DQqqfnV9lChoBkdAmGnThUBGQWgHTegDaAhHQKmpgsCDEm91fZQoaAZHQJLXmsIVuaZoB03oA2gIR0CprUPRZ2ZBdX2UKGgGR0CXGzGgBcRlaAdN6ANoCEdAqbMeitaIN3V9lChoBkdAmIrMoc7yQWgHTegDaAhHQKmzet+1Bt11fZQoaAZHQJhVOKBNEgJoB03oA2gIR0CptRO09hZydX2UKGgGR0CZQMyhBZ6laAdN6ANoCEdAqbjsihWYGHV9lChoBkdAmHYxYigTRWgHTegDaAhHQKm+yoAn2Ix1fZQoaAZHQJQuHe40/GFoB03oA2gIR0Cpvx2dd3SsdX2UKGgGR0CW71JAt4A0aAdN6ANoCEdAqcC+hZha1XV9lChoBkdAl7FE8aGYbGgHTegDaAhHQKnElxhDw6R1fZQoaAZHQJaDR44ZMtdoB03oA2gIR0CpyoV+y7f6dX2UKGgGR0CZGrX6ZYxMaAdN6ANoCEdAqcrZ2U0N0HV9lChoBkdAdlhMCLdepmgHTegDaAhHQKnMeRlHz6J1fZQoaAZHQJYQMk/r0J5oB03oA2gIR0Cp0Dr4N7SidX2UKGgGR0CYdcTAWSEEaAdN6ANoCEdAqdYxMajveHV9lChoBkdAl3omu9vjwWgHTegDaAhHQKnWiV2Rq491fZQoaAZHQJB5E5Ke05VoB03oA2gIR0Cp2B0xEfDDdX2UKGgGR0CPHKWGATZhaAdN6ANoCEdAqdv3BP9DQnV9lChoBkdAmV1beZXuE2gHTegDaAhHQKniEDlo11p1fZQoaAZHQJiLKYu01IloB03oA2gIR0Cp4me0gKWtdX2UKGgGR0CZlhlZowmFaAdN6ANoCEdAqeP+dmQKbHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eeea2a4ee6c1734583711f5246d3e09c0a538f6afad236d6cc91ec05f94ef5f0
|
3 |
+
size 1073495
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1503.311314413161, "std_reward": 97.70005611550351, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-02T19:41:54.668545"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1ac93760fe29fec3931b9f4a38c5c13f0eab9e3526b0f6e6157ca00c30d93aa9
|
3 |
+
size 2136
|