File size: 2,858 Bytes
06e1946 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
---
base_model: Rostlab/prot_bert
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: prot_bert-fine-tuned-toxicity_3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# prot_bert-fine-tuned-toxicity_3
This model is a fine-tuned version of [Rostlab/prot_bert](https://huggingface.co/Rostlab/prot_bert) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0450
- Accuracy: 0.7419
- Precision: 0.7530
- Recall: 0.7419
- F1: 0.7340
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 0.5735 | 1.0 | 16 | 0.5968 | 0.8065 | 0.8093 | 0.8065 | 0.8044 |
| 0.4855 | 2.0 | 32 | 0.4939 | 0.8387 | 0.8391 | 0.8387 | 0.8380 |
| 0.3499 | 3.0 | 48 | 0.5234 | 0.8065 | 0.8093 | 0.8065 | 0.8044 |
| 0.3094 | 4.0 | 64 | 0.4639 | 0.8387 | 0.8391 | 0.8387 | 0.8380 |
| 0.235 | 5.0 | 80 | 0.5654 | 0.8387 | 0.8391 | 0.8387 | 0.8380 |
| 0.1608 | 6.0 | 96 | 0.6409 | 0.8387 | 0.8391 | 0.8387 | 0.8380 |
| 0.1147 | 7.0 | 112 | 0.6271 | 0.8387 | 0.8391 | 0.8387 | 0.8380 |
| 0.171 | 8.0 | 128 | 0.7704 | 0.8065 | 0.8093 | 0.8065 | 0.8044 |
| 0.1762 | 9.0 | 144 | 0.7978 | 0.8065 | 0.8093 | 0.8065 | 0.8044 |
| 0.1438 | 10.0 | 160 | 0.9561 | 0.7419 | 0.7530 | 0.7419 | 0.7340 |
| 0.0953 | 11.0 | 176 | 1.0074 | 0.7419 | 0.7530 | 0.7419 | 0.7340 |
| 0.0394 | 12.0 | 192 | 1.0037 | 0.7419 | 0.7530 | 0.7419 | 0.7340 |
| 0.0896 | 13.0 | 208 | 1.0128 | 0.7419 | 0.7530 | 0.7419 | 0.7340 |
| 0.0849 | 14.0 | 224 | 1.0404 | 0.7419 | 0.7530 | 0.7419 | 0.7340 |
| 0.0207 | 15.0 | 240 | 1.0450 | 0.7419 | 0.7530 | 0.7419 | 0.7340 |
### Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
|