--- base_model: Rostlab/prot_bert tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: prot_bert-fine-tuned-toxicity_3 results: [] --- # prot_bert-fine-tuned-toxicity_3 This model is a fine-tuned version of [Rostlab/prot_bert](https://huggingface.co/Rostlab/prot_bert) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.0450 - Accuracy: 0.7419 - Precision: 0.7530 - Recall: 0.7419 - F1: 0.7340 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.5735 | 1.0 | 16 | 0.5968 | 0.8065 | 0.8093 | 0.8065 | 0.8044 | | 0.4855 | 2.0 | 32 | 0.4939 | 0.8387 | 0.8391 | 0.8387 | 0.8380 | | 0.3499 | 3.0 | 48 | 0.5234 | 0.8065 | 0.8093 | 0.8065 | 0.8044 | | 0.3094 | 4.0 | 64 | 0.4639 | 0.8387 | 0.8391 | 0.8387 | 0.8380 | | 0.235 | 5.0 | 80 | 0.5654 | 0.8387 | 0.8391 | 0.8387 | 0.8380 | | 0.1608 | 6.0 | 96 | 0.6409 | 0.8387 | 0.8391 | 0.8387 | 0.8380 | | 0.1147 | 7.0 | 112 | 0.6271 | 0.8387 | 0.8391 | 0.8387 | 0.8380 | | 0.171 | 8.0 | 128 | 0.7704 | 0.8065 | 0.8093 | 0.8065 | 0.8044 | | 0.1762 | 9.0 | 144 | 0.7978 | 0.8065 | 0.8093 | 0.8065 | 0.8044 | | 0.1438 | 10.0 | 160 | 0.9561 | 0.7419 | 0.7530 | 0.7419 | 0.7340 | | 0.0953 | 11.0 | 176 | 1.0074 | 0.7419 | 0.7530 | 0.7419 | 0.7340 | | 0.0394 | 12.0 | 192 | 1.0037 | 0.7419 | 0.7530 | 0.7419 | 0.7340 | | 0.0896 | 13.0 | 208 | 1.0128 | 0.7419 | 0.7530 | 0.7419 | 0.7340 | | 0.0849 | 14.0 | 224 | 1.0404 | 0.7419 | 0.7530 | 0.7419 | 0.7340 | | 0.0207 | 15.0 | 240 | 1.0450 | 0.7419 | 0.7530 | 0.7419 | 0.7340 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1